Applied Microbiology and Biotechnology

, Volume 103, Issue 10, pp 4089–4102 | Cite as

Regulation of teicoplanin biosynthesis: refining the roles of tei cluster-situated regulatory genes

  • Oleksandr Yushchuk
  • Liliya Horbal
  • Bohdan Ostash
  • Flavia Marinelli
  • Wolfgang Wohlleben
  • Evi Stegmann
  • Victor FedorenkoEmail author
Applied genetics and molecular biotechnology


Teicoplanin is a frontline glycopeptide antibiotic produced by Actinoplanes teichomyceticus. It is used to treat complicated cases of infection, including pediatric ones, caused by Gram-positive pathogens. There is a steady interest in elucidating the genetic mechanisms determining teicoplanin production, as they would help overproduce known teicoplanins and discover novel glycopeptides. Herein, we investigate the transcriptional organization of the tei biosynthetic gene cluster and the roles of the cluster-situated regulatory genes in controlling teicoplanin production and self-resistance in A. teichomyceticus. We demonstrate that the tei cluster is organized into nine polygenic and nine monogenic transcriptional units. Most of tei biosynthetic genes are subjected to StrR-like Tei15* control, which, in turn, appears to be regulated by LuxR-type Tei16*. Expression of the genes conferring teicoplanin self-resistance in A. teichomyceticus is not co-regulated with antibiotic production. The gene tei31*, coding for a putative DNA binding protein, is not expressed under teicoplanin producing conditions and is dispensable for antibiotic production. Finally, phylogenesis reconstruction of the glycopeptide cluster-encoded regulators reveals two main clades of StrR-like regulators. Tei15* and close orthologues form one of these clades; the second clade is composed by orthologues of Bbr and Dbv4, governing the biosynthesis of balhimycin and teicoplanin-like A40926, respectively. In addition, the LuxR-type Tei16* appears unrelated to the LuxR-like Dbv3, which is controlling A40926 biosynthesis. Our results shed new light on teicoplanin biosynthesis regulation and on the evolution of novel and old glycopeptide biosynthetic gene clusters.


Actinoplanes Glycopeptide antibiotics Glycopeptide resistance Teicoplanin Cluster-situated regulatory genes tei cluster 



This work was supported by grant Bg-46F from the Ministry of Education and Science of Ukraine to V. F., personal grants from CIB (Consorzio Interuniversitario per le Biotecnologie) and DAAD (German Academic Exchange Service) 57048249 to O.Y., and support from the DFG (SFB 766) to E.S.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9789_MOESM1_ESM.pdf (713 kb)
ESM 1 (PDF 713 kb)


  1. Alduina R, Piccolo LL, D’alia D, Ferraro C, Gunnarsson N, Donadio S, Puglia AM (2007) Phosphate-controlled regulator for the biosynthesis of the dalbavancin precursor A40926. J Bacteriol 189(22):8120–8129. Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410Google Scholar
  3. Armenia I, Marcone GL, Berini F, Orlandi VT, Pirrone C, Martegani E, Gornati R, Bernardini G, Marinelli F (2018) Magnetic nanoconjugated teicoplanin: a novel tool for bacterial infection site targeting. Front Microbiol 9:2270. Google Scholar
  4. Bassetti D, Cruciani M (1990) Teicoplanin therapy in children: a review. Scand J Infect Dis Suppl 72:35–37Google Scholar
  5. Beltrametti F, Consolandi A, Carrano L, Bagatini F, Rossi R, Leoni L, Zennaro E, Selva E, Marinelli F (2007) Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan. Antimicrob Agents Chemother 51(4):1135–1141. Google Scholar
  6. Binda E, Marinelli F, Marcone GL (2014) Old and new glycopeptide antibiotics: action and resistance. Antibiotics (Basel) 3(4):572–594. Google Scholar
  7. Binda E, Cappelletti P, Marinelli F, Marcone GL (2018) Specificity of induction of glycopeptide antibiotic resistance in the producing actinomycetes. Antibiotics (Basel) 7(2):36.
  8. Frasch HJ, Kalan L, Kilian R, Martin T, Wright GD, Stegmann E (2015) Alternative pathway to a glycopeptide-resistant cell wall in the balhimycin producer Amycolatopsis balhimycina. ACS Infect Dis 1(6):243–252. Google Scholar
  9. Fuchs A, Bielicki J, Mathur S, Sharland M, Van Den Anker JN (2018) Reviewing the WHO guidelines for antibiotic use for sepsis in neonates and children. Paediatr Int Child Health 38(sup1):S3–S15. Google Scholar
  10. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12(10):1619–1623Google Scholar
  11. Gonsior M, Mühlenweg A, Tietzmann M, Rausch S, Poch A, Süssmuth RD (2015) Biosynthesis of the peptide antibiotic feglymycin by a linear nonribosomal peptide synthetase mechanism. Chembiochem 16(18):2610–2614. Google Scholar
  12. Gust B, Kieser T, Chater K (2002) PCR targeting system in Streptomyces coelicolor A3(2). The John Innes Foundation, NorwichGoogle Scholar
  13. Ha H, Hwang Y, Choi S (2008) Application of conjugation using ϕC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30(7):1233–1238. Google Scholar
  14. He HY, Pan HX, Wu LF, Zhang BB, Chai HB, Liu W, Tang GL (2012) Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem Biol 19(10):1313–1323. Google Scholar
  15. Horbal L, Zaburannyy N, Ostash B, Shulga S, Fedorenko V (2012) Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus. World J Microbiol Biotechnol 28(5):2095–2100. Google Scholar
  16. Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V (2013) Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus—producer of teicoplanin, drug of last defense. J Biotechnol 168(4):367–372. Google Scholar
  17. Horbal L, Kobylyanskyy A, Truman AW, Zaburranyi N, Ostash B, Luzhetskyy A, Marinelli F, Fedorenko V (2014) The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 98(22):9295–9309. Google Scholar
  18. Hutchings MI, Hong HJ, Buttner MJ (2006) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59(3):923–935. Google Scholar
  19. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  20. Kilian R, Frasch HJ, Kulik A, Wohlleben W, Stegmann E (2016) The VanRS homologous two-component system VnlRSAb of the glycopeptide producer Amycolatopsis balhimycina activates transcription of the vanHAXSc genes in Streptomyces coelicolor, but not in A. balhimycina. Microb Drug Resist 22(6):499–509. Google Scholar
  21. Lee P, Umeyama T, Horinouchi S (2002) afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 43(6):1413–1430Google Scholar
  22. Li TL, Huang F, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11(1):107–119. Google Scholar
  23. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143. Google Scholar
  24. lo Grasso L, Maffioli S, Sosio M, Bibb M, Puglia AM, Alduina R (2015) Two master switch regulators trigger A40926 biosynthesis in Nonomuraea sp. strain ATCC 39727. J Bacteriol 197(15):2536–2544. Google Scholar
  25. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32(Web Server issue):W327–W331Google Scholar
  26. Marcone GL, Carrano L, Marinelli F, Beltrametti F (2010) Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes. J Antibiot (Tokyo) 63(2):83–88. Google Scholar
  27. Marcone GL, Binda E, Carrano L, Bibb M, Marinelli F (2014) Relationship between glycopeptide production and resistance in the actinomycete Nonomuraea sp. ATCC 39727. Antimicrob Agents Chemother 58(9):5191–5201. Google Scholar
  28. Marcone GL, Binda E, Berini F, Marinelli F (2018) Old and new glycopeptide antibiotics: from product to gene and back in the post-genomic era. Biotechnol Adv 36(2):534–554. Google Scholar
  29. Pfeifer V, Nicholson GJ, Ries J, Recktenwald J, Schefer AB, Shawky RM, Schröder J, Wohlleben W, Pelzer S (2001) A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (s)-3,5-dihydroxyphenylglycine. J Biol Chem 276(42):38370–38377. Google Scholar
  30. Puk O, Bischoff D, Kittel C, Pelzer S, Weist S, Stegmann E, Süssmuth RD, Wohlleben W (2004) Biosynthesis of chloro-β-hydroxytyrosine, a nonproteinogenic amino acid of the peptidic backbone of glycopeptide antibiotics. J Bacteriol 186(18):6093–6100. Google Scholar
  31. Santos CL, Correia-Neves M, Moradas-Ferreira P, Mendes MV (2012) A walk into the LuxR regulators of Actinobacteria: phylogenomic distribution and functional diversity. PLoS One 7(10):e46758. Google Scholar
  32. Schäberle TF, Vollmer W, Frasch HJ, Hüttel S, Kulik A, Röttgen M, von Thaler AK, Wohlleben W, Stegmann E (2011) Self-resistance and cell wall composition in the glycopeptide producer Amycolatopsis balhimycina. Antimicrob Agents Chemother 55(9):4283–4289. Google Scholar
  33. Shawky RM, Puk O, Wietzorrek A, Pelzer S, Takano E, Wohlleben W, Stegmann E (2007) The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. J Mol Microbiol Biotechnol 13(1–3):76–88. Google Scholar
  34. Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26(6):917–923Google Scholar
  35. Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150(Pt 1):95–102. Google Scholar
  36. Spohn M, Kirchner N, Kulik A, Jochim A, Wolf F, Muenzer P, Borst O, Gross H, Wohlleben W, Stegmann E (2014) Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob Agents Chemother 58(10):6185–6196. Google Scholar
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. Google Scholar
  38. Taurino C, Frattini L, Marcone GL, Gastaldo L, Marinelli F (2011) Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin. Microb Cell Factories 10:82. Google Scholar
  39. Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, Wright GD (2013) Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol 31(10):922–927. Google Scholar
  40. Umeyama T, Lee P-C, Horinouchi S (2002) Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl Microbiol Biotechnol 59(4–5):419–425. Google Scholar
  41. Vértesy L, Aretz W, Knauf M, Markus A, Vogel M, Wink J (1999) Feglymycin, a novel inhibitor of the replication of the human immunodeficiency virus. Fermentation, isolation and structure elucidation. J Antibiot (Tokyo) 52(4):374–382Google Scholar
  42. Yim G, Kalan L, Koteva K, Thaker MN, Waglechner N, Tang I, Wright GD (2014) Harnessing the synthetic capabilities of glycopeptide antibiotic tailoring enzymes: characterization of the UK-68,597 biosynthetic cluster. Chembiochem 15(17):2613–2623. Google Scholar
  43. Yushchuk O, Ostash B, Pham TH, Luzhetskyy A, Fedorenko V, Truman AW, Horbal L (2016) Characterization of the post-assembly line tailoring processes in teicoplanin biosynthesis. ACS Chem Biol 11(8):2254–2264. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Genetics and BiotechnologyIvan Franko National University of LvivLvivUkraine
  2. 2.Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland, Actinobacteria Metabolic Engineering GroupSaarland UniversitySaarbruckenGermany
  3. 3.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  4. 4.Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/BiotechnologyUniversity of TübingenTubingenGermany

Personalised recommendations