Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 10, pp 3931–3940 | Cite as

Lassomycin and lariatin lasso peptides as suitable antibiotics for combating mycobacterial infections: current state of biosynthesis and perspectives for production

  • Shaozhou ZhuEmail author
  • Yu Su
  • Saira Shams
  • Yue Feng
  • Yigang Tong
  • Guojun ZhengEmail author
Mini-Review
  • 305 Downloads

Abstract

Lasso peptides are ribosomally synthesized and post-translationally modified natural products with a characteristic slipknot-like structure, which confers these peptides remarkable stability and diverse pharmacologically relevant bioactivities. Among all the reported lasso peptides, lassomycin and lariatins are unique lasso peptides that exhibit noticeable anti-tuberculosis (TB) activity. Due to the unique threaded structure and the unusual bactericidal mechanism toward Mycobacterium tuberculosis, these peptides have drawn considerable interest, not only in the field of total synthesis but also in several other fields including biosynthesis, bioengineering, and structure-activity studies. During the past few years, significant progress has been made in understanding the biosynthetic mechanism of these intriguing compounds, which has provided a solid foundation for future work. This review highlights recent achievements in the discovery, structure elucidation, biological activity, and the unique anti-TB mechanism of lasso peptides. Moreover, the discovery of their biosynthetic pathway has laid the foundation for combinatorial biosynthesis of their analogs, which provides new perspectives for the production of novel anti-TB lasso peptides.

Keywords

Lasso peptide Anti-TB Natural products Lariatin Lassomycin Ribosomally synthesized and post-translationally modified peptides Tuberculosis RiPPs Combinatorial biosynthesis 

Notes

Funding information

This work was supported by the Fundamental Research Funds for the Central Universities (XK1802-8 and XK1803-06), National Natural Science Foundation of China (NSFC, Grant No. 21706005), and National Great Science and Technology Projects (2018ZX09721001). Dedicated to Renzhi Zhu.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160.  https://doi.org/10.1039/C2NP20085F CrossRefGoogle Scholar
  2. Bayro MJ, Mukhopadhyay J, Swapna GVT, Huang JY, Ma L-C, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide Microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125(41):12382–12383.  https://doi.org/10.1021/ja036677e CrossRefGoogle Scholar
  3. Burkhart BJ, Hudson GA, Dunbar KL, Mitchell DA (2015) A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol 11(8):564–570.  https://doi.org/10.1038/nchembio.1856 CrossRefGoogle Scholar
  4. Burkhart BJ, Kakkar N, Hudson GA, van der Donk WA, Mitchell DA (2017) Chimeric leader peptides for the generation of non-natural hybrid RiPP products. ACS Cent Sci 3(6):629–638.  https://doi.org/10.1021/acscentsci.7b00141 CrossRefGoogle Scholar
  5. Cano-Muniz S, Anthony R, Niemann S, Alffenaar JC (2018) New approaches and therapeutic options for Mycobacterium tuberculosis in a dormant state. Clin Microbiol Rev 31(1).  https://doi.org/10.1128/CMR.00060-17
  6. Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51(9):2618–2628.  https://doi.org/10.1021/jm700948z CrossRefGoogle Scholar
  7. Chekan JR, Koos JD, Zong C, Maksimov MO, Link AJ, Nair SK (2016) Structure of the lasso peptide isopeptidase identifies a topology for processing threaded substrates. J Am Chem Soc 138(50):16452–16458.  https://doi.org/10.1021/jacs.6b10389 CrossRefGoogle Scholar
  8. Cheung WL, Chen MY, Maksimov MO, Link AJ (2016) Lasso peptide biosynthetic protein LarB1 binds both leader and core peptide regions of the precursor protein LarA. ACS Cent Sci 2(10):702–709.  https://doi.org/10.1021/acscentsci.6b00184 CrossRefGoogle Scholar
  9. DiCaprio AJ, Firouzbakht A, Hudson GA, Mitchell DA (2018) Enzymatic reconstitution and biosynthetic investigation of the lasso peptide fusilassin. J Am Chem Soc 141:290–297.  https://doi.org/10.1021/jacs.8b09928 CrossRefGoogle Scholar
  10. Dit Fouque KJ, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F (2018) Identification of lasso peptide topologies using native nanoelectrospray ionization-trapped ion mobility spectrometry-mass spectrometry. Anal Chem 90:5139–5146.  https://doi.org/10.1021/acs.analchem.7b05230 CrossRefGoogle Scholar
  11. Duquesne S, Destoumieux-Garzón D, Zirah S, Goulard C, Peduzzi J, Rebuffat S (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14(7):793–803.  https://doi.org/10.1016/j.chembiol.2007.06.004 CrossRefGoogle Scholar
  12. Elsayed SS, Trusch F, Deng H, Raab A, Prokes I, Busarakam K, Asenjo JA, Andrews BA, van West P, Bull AT, Goodfellow M, Yi Y, Ebel R, Jaspars M, Rateb ME (2015) Chaxapeptin, a lasso peptide from extremotolerant Streptomyces leeuwenhoekii strain C58 from the hyperarid Atacama Desert. J Org Chem 80(20):10252–10260.  https://doi.org/10.1021/acs.joc.5b01878 CrossRefGoogle Scholar
  13. Falzon D, Schunemann HJ, Harausz E, Gonzalez-Angulo L, Lienhardt C, Jaramillo E, Weyer K (2017) World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J 49(3):1602308.  https://doi.org/10.1183/13993003.02308-2016 CrossRefGoogle Scholar
  14. Feng Z, Ogasawara Y, Nomura S, Dairi T (2018) Biosynthetic gene cluster of a d-tryptophan-containing lasso peptide, MS-271. ChemBioChem 19:2045–2048.  https://doi.org/10.1002/cbic.201800315 CrossRefGoogle Scholar
  15. Fouque KJD, Lavanant H, Zirah S, Hegemann JD, Zimmermann M, Marahiel MA, Rebuffat S, Afonso C (2017) Signatures of mechanically interlocked topology of lasso peptides by ion mobility–mass spectrometry: lessons from a collection of representatives. J Am Soc Mass Spectrom 28(2):315–322.  https://doi.org/10.1007/s13361-016-1524-8 CrossRefGoogle Scholar
  16. Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H, Akopian T, Mueller A, Epstein S, Goldberg A, Clardy J, Lewis K (2014) Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 21(4):509–518.  https://doi.org/10.1016/j.chembiol.2014.01.014 CrossRefGoogle Scholar
  17. Hanumunthadu B, Harrison T, Mathew D, Cotter M (2016) Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: successes and complications on outpatient parenteral antimicrobial therapy at a London teaching hospital between 2009 and 2016. Open Forum Infect Dis 3(suppl_1):558–558.  https://doi.org/10.1093/ofid/ofw172.421 CrossRefGoogle Scholar
  18. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129.  https://doi.org/10.1038/nrd4510 CrossRefGoogle Scholar
  19. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013a) Caulosegnins I–III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135(1):210–222.  https://doi.org/10.1021/ja308173b CrossRefGoogle Scholar
  20. Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013b) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Pept Sci 100(5):527–542.  https://doi.org/10.1002/bip.22326 CrossRefGoogle Scholar
  21. Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem Int Ed Engl 53(8):2230–2234.  https://doi.org/10.1002/anie.201309267 CrossRefGoogle Scholar
  22. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 48(7):1909–1919.  https://doi.org/10.1021/acs.accounts.5b00156 CrossRefGoogle Scholar
  23. Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95(2):451–460.  https://doi.org/10.1007/s00253-012-3973-8 CrossRefGoogle Scholar
  24. Inokoshi J, Koyama N, Miyake M, Shimizu Y, Tomoda H (2016) Structure-activity analysis of gram-positive bacterium-producing lasso peptides with anti-mycobacterial activity. Sci Rep 6:30375.  https://doi.org/10.1038/srep30375 CrossRefGoogle Scholar
  25. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128(23):7486–7491.  https://doi.org/10.1021/ja056780z CrossRefGoogle Scholar
  26. Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, Arai M, Kobayashi S, Matsumoto M, Inokoshi J, Tomoda H, Omura S (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot 60(6):357–363.  https://doi.org/10.1038/ja.2007.48 CrossRefGoogle Scholar
  27. Iwatsuki M, Koizumi Y, Gouda H, Hirono S, Tomoda H, Omura S (2009) Lys17 in the ‘lasso’ peptide lariatin A is responsible for anti-mycobacterial activity. Bioorg Med Chem Lett 19(10):2888–2890.  https://doi.org/10.1016/j.bmcl.2009.03.033 CrossRefGoogle Scholar
  28. Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130(34):11446–11454.  https://doi.org/10.1021/ja802966g CrossRefGoogle Scholar
  29. Koos JD, Link AJ (2018) Heterologous and in vitro reconstitution of fuscanodin, a lasso peptide from Thermobifida fusca. J Am Chem Soc 141:928–935.  https://doi.org/10.1021/jacs.8b10724 CrossRefGoogle Scholar
  30. Lear S, Munshi T, Hudson AS, Hatton C, Clardy J, Mosely JA, Bull TJ, Sit CS, Cobb SL (2016) Total chemical synthesis of lassomycin and lassomycin-amide. Org Biomol Chem 14(19):4534–4541.  https://doi.org/10.1039/c6ob00631k CrossRefGoogle Scholar
  31. Lee H, Suh JW (2016) Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J Ind Microbiol Biotechnol 43(2–3):205–212.  https://doi.org/10.1007/s10295-015-1709-3 CrossRefGoogle Scholar
  32. Letzel A-C, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 15(1):983.  https://doi.org/10.1186/1471-2164-15-983 CrossRefGoogle Scholar
  33. Li Y, Ducasse R, Zirah S, Blond A, Goulard C, Lescop E, Giraud C, Hartke A, Guittet E, Pernodet J-L, Rebuffat S (2015) Characterization of Sviceucin from Streptomyces provides insight into enzyme exchangeability and disulfide bond formation in lasso peptides. ACS Chem Biol 10(11):2641–2649.  https://doi.org/10.1021/acschembio.5b00584 CrossRefGoogle Scholar
  34. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459.  https://doi.org/10.1038/nature14098 CrossRefGoogle Scholar
  35. Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41(2):333–344.  https://doi.org/10.1007/s10295-013-1357-4 CrossRefGoogle Scholar
  36. Maksimov MO, Pan SJ, James Link A (2012a) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29(9):996–1006.  https://doi.org/10.1039/C2NP20070H CrossRefGoogle Scholar
  37. Maksimov MO, Pelczer I, Link AJ (2012b) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A 109(38):15223–15228.  https://doi.org/10.1073/pnas.1208978109 CrossRefGoogle Scholar
  38. Martin-Gomez H, Tulla-Puche J (2018) Lasso peptides: chemical approaches and structural elucidation. Org Biomo Chem 16(28):5065–5080.  https://doi.org/10.1039/c8ob01304g CrossRefGoogle Scholar
  39. Metelev M, Tietz Jonathan I, Melby Joel O, Blair Patricia M, Zhu L, Livnat I, Severinov K, Mitchell Douglas A (2015) Structure, bioactivity, and resistance mechanism of Streptomonomicin, an unusual lasso peptide from an understudied halophilic Actinomycete. Chem Biol 22(2):241–250.  https://doi.org/10.1016/j.chembiol.2014.11.017 CrossRefGoogle Scholar
  40. Metelev M, Arseniev A, Bushin LB, Kuznedelov K, Artamonova TO, Kondratenko R, Khodorkovskii M, Seyedsayamdost MR, Severinov K (2017) Acinetodin and klebsidin, RNA polymerase targeting lasso peptides produced by human isolates of Acinetobacter gyllenbergii and Klebsiella pneumoniae. ACS Chem Biol 12(3):814–824.  https://doi.org/10.1021/acschembio.6b01154 CrossRefGoogle Scholar
  41. Mevaere J, Goulard C, Schneider O, Sekurova ON, Ma H, Zirah S, Afonso C, Rebuffat S, Zotchev SB, Li Y (2018) An orthogonal system for heterologous expression of actinobacterial lasso peptides in Streptomyces hosts. Sci Rep 8(1):8232.  https://doi.org/10.1038/s41598-018-26620-0 CrossRefGoogle Scholar
  42. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661.  https://doi.org/10.1021/acs.jnatprod.5b01055 CrossRefGoogle Scholar
  43. Ogawa T, Ochiai K, Tanaka T, Tsukuda E, Chiba S, Yano K, Yamasaki M, Yoshida M, Matsuda Y (1995) RES-701-2, -3 and -4, novel and selective endothelin type B receptor antagonists produced by Streptomyces sp. I. Taxonomy of producing strains, fermentation, isolation, and biochemical properties. J Antibiot 48(11):1213–1220CrossRefGoogle Scholar
  44. Pan SJ, Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J Am Chem Soc 133(13):5016–5023.  https://doi.org/10.1021/ja1109634 CrossRefGoogle Scholar
  45. Parish T (2014) Targeting mycobacterial proteolytic complexes with natural products. Chem Biol 21(4):437–438.  https://doi.org/10.1016/j.chembiol.2014.04.002 CrossRefGoogle Scholar
  46. Piscotta FJ, Tharp JM, Liu WR, Link AJ (2015) Expanding the chemical diversity of lasso peptide MccJ25 with genetically encoded noncanonical amino acids. Chem Commun 51(2):409–412.  https://doi.org/10.1039/C4CC07778D CrossRefGoogle Scholar
  47. Shen B (2015) A new golden age of natural products drug discovery. Cell 163(6):1297–1300.  https://doi.org/10.1016/j.cell.2015.11.031 CrossRefGoogle Scholar
  48. Su Y, Han M, Meng X, Feng Y, Luo S, Yu C, Zheng G, Zhu S (2019) Discovery and characterization of a novel C-terminal peptide carboxyl methyltransferase in a lassomycin-like lasso peptide biosynthetic pathway. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-019-09645-x
  49. Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI, Mitchell DA (2017) A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol 13(5):470–478.  https://doi.org/10.1038/nchembio.2319 CrossRefGoogle Scholar
  50. Velásquez JE, van der Donk WA (2011) Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 15(1):11–21.  https://doi.org/10.1016/j.cbpa.2010.10.027 CrossRefGoogle Scholar
  51. Weinhaupl K, Brennich M, Kazmaier U, Lelievre J, Ballell L, Goldberg A, Schanda P, Fraga H (2018) The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis. J Biol Chem 293(22):8379–8393.  https://doi.org/10.1074/jbc.RA118.002251
  52. WHO (2018) WHO World Health Organization. 2018. Global tuberculosis report 2018. World Health Organization, GenevaGoogle Scholar
  53. Xu Y, Wu J, Liao S, Sun Z (2017) Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes. Ann Clin Microbiol Antimicrob 16(1):67.  https://doi.org/10.1186/s12941-017-0239-4 CrossRefGoogle Scholar
  54. Yan K-P, Li Y, Zirah S, Goulard C, Knappe TA, Marahiel MA, Rebuffat S (2012) Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. ChemBioChem 13(7):1046–1052.  https://doi.org/10.1002/cbic.201200016 CrossRefGoogle Scholar
  55. Zhu S, Fage CD, Hegemann JD, Mielcarek A, Yan D, Linne U, Marahiel MA (2016a) The B1 protein guides the biosynthesis of a lasso peptide. Sci Rep 6:35604.  https://doi.org/10.1038/srep35604 CrossRefGoogle Scholar
  56. Zhu S, Fage CD, Hegemann JD, Yan D, Marahiel MA (2016b) Dual substrate-controlled kinase activity leads to polyphosphorylated lasso peptides. FEBS Lett 590(19):3323–3334.  https://doi.org/10.1002/1873-3468.12386 CrossRefGoogle Scholar
  57. Zhu S, Hegemann JD, Fage CD, Zimmermann M, Xie X, Linne U, Marahiel MA (2016c) Insights into the unique phosphorylation of the lasso peptide Paeninodin. J Biol Chem 291(26):13662–13678.  https://doi.org/10.1074/jbc.M116.722108
  58. Zong C, Maksimov MO, Link AJ (2016) Construction of lasso peptide fusion proteins. ACS Chem Biol 11(1):61–68.  https://doi.org/10.1021/acschembio.5b00745 CrossRefGoogle Scholar
  59. Zong C, Wu MJ, Qin JZ, Link AJ (2017) Lasso peptide benenodin-1 is a thermally actuated [1] rotaxane switch. J Am Chem Soc 139(30):10403–10409.  https://doi.org/10.1021/jacs.7b04830 CrossRefGoogle Scholar
  60. Zong C, Cheung-Lee WL, Elashal HE, Raj M, Link AJ (2018) Albusnodin: an acetylated lasso peptide from Streptomyces albus. Chem Commun 54(11):1339–1342.  https://doi.org/10.1039/c7cc08620b CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resources EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations