Applied Microbiology and Biotechnology

, Volume 103, Issue 10, pp 3941–3953 | Cite as

Targeting ideal oral vaccine vectors based on probiotics: a systematical view

  • Boyu Jiang
  • Zhendong Li
  • Bingming Ou
  • Qiangde DuanEmail author
  • Guoqiang ZhuEmail author


Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration. Here, we attempt to systematically summarize several fundamental issues vital to the effectiveness of the vector of probiotics, including the stability of the engineered vectors, the optimization of antigen expression, the improvement of colonization, and the enhancement of immunoreactivity. We also compared the existent strategies and some developing ones, attempting to figure out an optimal strategy that might deserve to be referred in the future development of oral vaccine vectors based on probiotics.


Probiotics Oral vaccine vector Stability Colonization Immunoreactivity 


Funding information

This study was supported by Grant No. 2017YFD0500105, 2016YFD0500905 from the National Key Research and Development Program of China, grant No.AA18118050 from the Department of Science and Technology in Guangxi Autonomous Region, grants from the Chinese National Science Foundation Grant (No. 31672579, 31873010, 31800121, 30571374, 30771603, 31072136, 31270171), by international collaboration program of the Science and Technology Department of Yangzhou (Grant No. YZ2018154), a project founded by the Priority Academic Program of Development Jiangsu High Education Institution.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abdullah Al M, Sugimoto S, Higashi C, Matsumoto S, Sonomoto K (2010) Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK. Appl Environ Microbiol 76(13):4277–4285. Google Scholar
  2. Akhverdyan VZ, Gak ER, Tokmakova IL, Stoynova NV, Yomantas YA, Mashko SV (2011) Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria--mini review. Appl Microbiol Biotechnol 91(4):857–871. PubMedPubMedCentralGoogle Scholar
  3. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572. PubMedPubMedCentralGoogle Scholar
  4. Anbazhagan K, Sasikumar P, Gomathi S, Priya HP, Selvam GS (2013) In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J Appl Mircobiol 115(3):880–887. Google Scholar
  5. Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J (2010) Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 6(11):e1001147. PubMedPubMedCentralGoogle Scholar
  6. Barnes AG, Cerovic V, Hobson PS, Klavinskis LS (2007) Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur J Immunol 37(6):1538–1547. PubMedGoogle Scholar
  7. Baumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535(7610):85–93. PubMedPubMedCentralGoogle Scholar
  8. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73(2):399S–405SGoogle Scholar
  9. Bohmer N, Lutzwahl S, Fischer L (2012) Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp. Appl Microbiol Biotechnol 96(4):903–912. PubMedGoogle Scholar
  10. Bonacina J, Suarez N, Hormigo R, Fadda S, Lechner M, Saavedra L (2017) A genomic view of food-related and probiotic Enterococcus strains. DNA Res 24(1):11–24. CrossRefPubMedGoogle Scholar
  11. Bryant JA, Sellars LE, Busby SJW, Lee DJ (2014) Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res 42(18):11383–11392. PubMedPubMedCentralGoogle Scholar
  12. Buddenborg C, Daudel D, Liebrecht S, Greune L, Humberg V, Schmidt MA (2008) Development of a tripartite vector system for live oral immunization using a gram-negative probiotic carrier. Int J Med Microbiol 298(1–2):105–114. PubMedGoogle Scholar
  13. Caggianiello G, Kleerebezem M, Spano G (2016) Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 100(9):3877–3886. PubMedGoogle Scholar
  14. Carvalho AL, Cardoso FS, Bohn A, Neves AR, Santos H (2011) Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl Environ Microbiol 77(12):4189–4199. PubMedPubMedCentralGoogle Scholar
  15. Chaconas G, Gloor G, Miller JL (1985) Amplification and purification of the bacteriophage Mu encoded B transposition protein. J Biol Chem 260(5):2662–2669PubMedGoogle Scholar
  16. Chaves ACSD, Fernandez M, Lerayer ALS, Mierau I, Kleerebezem M, Hugenholtz J (2002) Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl Environ Microbiol 68(11):5656–5662. PubMedPubMedCentralGoogle Scholar
  17. Collado MC, Meriluoto J, Salminen S (2007a) Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus? J Dairy Sci 90(6):2710–2716. PubMedGoogle Scholar
  18. Collado MC, Meriluoto J, Salminen S (2007b) In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Res Int 40(5):629–636. Google Scholar
  19. Collado MC, Sanz Y (2007) Induction of acid resistance in Bifidobacterium: a mechanism for improving desirable traits of potentially probiotic strains. J Appl Microbiol 103(4):1147–1157. PubMedGoogle Scholar
  20. Cong L, Ran FA, Cox DM, Lin S, Barretto RPJ, Habib N, Hsu P, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. PubMedPubMedCentralGoogle Scholar
  21. Córdoba Park Hotel A (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria – Joint FAO/WHO Expert Consultation, vol 2014,Google Scholar
  22. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock REW, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Olafsdottir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 16(2):239–251. PubMedGoogle Scholar
  23. da Silva AJ, Zangirolami TC, Novo-Mansur MTM, Giordano RC, Martins EAL (2014) Live bacterial vaccine vectors: an overview. Braz J Microbiol 45(4):1117–1129. PubMedGoogle Scholar
  24. Ding C, Ma J, Dong Q, Liu Q (2018) Live bacterial vaccine vector and delivery strategies of heterologous antigen: a review. Immunol Lett 197:70–77. PubMedGoogle Scholar
  25. Dodoo CC, Wang J, Basit AW, Stapleton P, Gaisford S (2017) Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int J Pharm 530(1–2):224–229. PubMedGoogle Scholar
  26. Duan QD, Zhou MX, Zhu XF, Bao WB, Wu SL, Ruan XS, Zhang WP, Yang Y, Zhu J, Zhu GQ (2012) The flagella of F18ab Escherichia coli is a virulence factor that contributes to infection in a IPEC-J2 cell model in vitro. Vet Microbiol 160(1–2):132–140. PubMedGoogle Scholar
  27. Duan QD, Zhou MX, Liang H, Zhu XF, Guo ZY, Li YC, Hardwidge PR, Zhu GQ (2013) Contribution of flagellin subunit FliC to piglet epithelial cells invasion by F18ab E. coli. Vet Microbiol 166(1–2):220–224. PubMedGoogle Scholar
  28. Duc le H, Hong HA, Uyen NQ, Cutting SM (2004) Intracellular fate and immunogenicity of B. subtilis spores. Vaccine 22(15–16):1873–1885. PubMedGoogle Scholar
  29. Duc LH, Cutting SM (2003) Bacterial spores as heat stable vaccine vehicles. Expert Opin Biol Th 3(8):1263–1270. Google Scholar
  30. Duc LH, Hong HA, Cutting SM (2003a) Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21(27–30):4215–4224. Google Scholar
  31. Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM (2003b) Bacterial spores as vaccine vehicles. Infect Immun 71(5):2810–2818. PubMedCentralGoogle Scholar
  32. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–U133. PubMedPubMedCentralGoogle Scholar
  33. Fang H, Elina T, Heikki A, Seppo S (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol 29(1):47–52. PubMedGoogle Scholar
  34. Floch MH, Walker WA, Madsen K, Sanders ME, Macfarlane GT, Flint HJ, Dieleman LA, Ringel Y, Guandalini S, Kelly CP, Brandt LJ (2011) Recommendations for probiotic use-2011 update. J Clin Gastroenterol 45:S168–S171. PubMedGoogle Scholar
  35. Fredriksen L, Kleiveland CR, Hult LTO, Lea T, Nygaard CS, Eijsink VGH, Mathiesen G (2012) Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes. Appl Environ Microbiol 78(16):5864–5871. PubMedPubMedCentralGoogle Scholar
  36. Gahan ME, Webster DE, Wesselingh SL, Strugnell RA (2007) Impact of plasmid stability on oral DNA delivery by Salmonella enterica serovar typhimurium. Vaccine 25(8):1476–1483. PubMedGoogle Scholar
  37. Gentschev I, Dietrich G, Goebel W (2002) The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol 10(1):39–45. PubMedGoogle Scholar
  38. Gleinser M, Grimm V, Zhurina D, Yuan J, Riedel CU (2012) Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb Cell Factories 11:14. Google Scholar
  39. Goldhaber-Gordon I, Williams TL, Baker TA (2002) DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA. J Biol Chem 277(10):7694–7702. PubMedGoogle Scholar
  40. Gomez NC, Ramiro JMP, Quecan BXV, de Melo Franco BDG (2016) Use of potential probiotic lactic acid Bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Front Microbiol 7:15. Google Scholar
  41. Grimm V, Westermann C, Riedel CU (2014) Bifidobacteria-host interactions—an update on colonisation factors. Biomed Res Int 2014:960826–960826. PubMedPubMedCentralGoogle Scholar
  42. Gu Q, Song D, Zhu M (2009) Oral vaccination of mice against Helicobacter pylori with recombinant Lactococcus lactis expressing urease subunit B. FEMS Immunol Med Microbiol 56(3):197–203. PubMedGoogle Scholar
  43. Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183(21):6384–6393. PubMedPubMedCentralGoogle Scholar
  44. Herich R, Levkut M (2002) Lactic acid bacteria, probiotics and immune system. Vet Med-Czech 47(6):169–180. Google Scholar
  45. Hoa TT, Duc LH, Isticato R, Baccigalupi L, Ricca E, Van PH, Cutting SM (2001) Fate and dissemination of Bacillus subtilis spores in a murine model. Appl Environ Microbiol 67(9):3819–3823. PubMedPubMedCentralGoogle Scholar
  46. Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11:S45–S53. PubMedGoogle Scholar
  47. Hossain MI, Sadekuzzaman M, Ha SD (2017) Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food Res Int 100:63–73. PubMedGoogle Scholar
  48. Hou X, Jiang X, Jiang Y, Tang L, Xu Y, Qiao X, Min L, Wen C, Ma G, Li Y (2018) Oral immunization against PEDV with recombinant Lactobacillus casei expressing dendritic cell-targeting peptide fusing COE protein of PEDV in piglets. Viruses 10(3).
  49. Huang JM, La Ragione RM, Cooley WA, Todryk S, Cutting SM (2008) Cytoplasmic delivery of antigens, by Bacillus subtilis enhances Th1 responses. Vaccine 26(48):6043–6052. PubMedGoogle Scholar
  50. Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H (1993) Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 105(6):1643–1650. PubMedGoogle Scholar
  51. Iwaki M, Okahashi N, Takahashi I, Kanamoto T, Sugitakonishi Y, Aibara K, Koga T (1990) Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene. Infect Immun 58(9):2929–2934PubMedPubMedCentralGoogle Scholar
  52. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514. PubMedPubMedCentralGoogle Scholar
  53. Kanchiswamy CN, Maffei M, Malnoy M, Velasco R, Kim JS (2016) Fine-tuning next-generation genome editing tools. Trends Biotechnol 34(7):562–574. PubMedGoogle Scholar
  54. Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. In: Gottesman S (ed) Annu Rev Microbiol, vol 67. Annual Reviews, Palo Alto, pp 65–81Google Scholar
  55. Kanmani P, Kumar RS, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2013) Probiotics and its functionally valuable products - a review. Crit Rev Food Sci 53(6):641–658. Google Scholar
  56. Karlskas IL, Maudal K, Axelsson L, Rud I, Eijsink VG, Mathiesen G (2014) Heterologous protein secretion in Lactobacilli with modified pSIP vectors. PLoS One 9(3):e91125. PubMedPubMedCentralGoogle Scholar
  57. Kaufmann SHE, Hess J (1999) Impact of intracellular location of and antigen display by intracellular bacteria: implications for vaccine development. Immunol Lett 65:81–84. PubMedGoogle Scholar
  58. Kuda T, Kawahara M, Nemoto M, Takahashi H, Kimura B (2014) In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food Res Int 64:248–255. PubMedGoogle Scholar
  59. Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R (2016) Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiol 11(4):585–600. PubMedGoogle Scholar
  60. Wu XS, Xin L, Yin WX, Shang XY, Lu L, Watt RM, Cheah KSE, Huang JD, Liu DP, Liang CC (2005) Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression. Proc Natl Acad Sci U S A 102(7):2508–2513. PubMedPubMedCentralGoogle Scholar
  61. Lee SF, Halperin SA, Wang H, MacArthur A (2002) Oral colonization and immune responses to Streptococcus gordonii expressing a pertussis toxin S1 fragment in mice. FEMS Microbiol Lett 208(2):175–178. PubMedGoogle Scholar
  62. Li ZD, Quan GM, Jiang XY, Yang Y, Ding XY, Zhang D, Wang XQ, Hardwidge PR, Ren WK, Zhu GQ (2018) Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 8:12. Google Scholar
  63. Lin WH, Hwang CF, Chen LW, Tsen HY (2006) Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol 23(1):74–81. PubMedGoogle Scholar
  64. Ma S, Wang L, Huang X, Wang X, Chen S, Shi W, Qiao X, Jiang Y, Tang L, Xu Y, Li Y (2018) Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb Cell Factories 17(1):20. Google Scholar
  65. Marelli B, Perez AR, Banchio C, de Mendoza D, Magni C (2011) Oral immunization with live Lactococcus lactis expressing rotavirus VP8 subunit induces specific immune response in mice. J Virol Methods 175(1):28–37. PubMedGoogle Scholar
  66. Medina E, Guzman CA (2001) Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine 19:1573–1580. PubMedGoogle Scholar
  67. Murphy K (2016) λ recombination and Recombineering. EcoSal plus 7(1).
  68. Navarro JB, Mashburn-Warren L, Bakaletz LO, Bailey MT, Goodman SD (2017) Enhanced probiotic potential of Lactobacillus reuteri when delivered as a biofilm on Dextranomer microspheres that contain beneficial cargo. Front Microbiol 8:489. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nouaille S, Bermudez-Humaran LG, Adel-Patient K, Commissaire J, Gruss A, Wal GM, Azevedo V, Langella P, Chatel JM (2005) Improvement of bovine beta-lactoglobulin production and secretion by Lactococcus lactis. Braz J Med Biol Res 38(3):353–359. PubMedGoogle Scholar
  70. Ou BM, Garcia C, Wang YJ, Zhang WP, Zhu GQ (2018) Techniques for chromosomal integration and expression optimization in Escherichia coli. Biotechnol Bioeng 115(10):2467–2478. PubMedGoogle Scholar
  71. Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G (2016) Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 100(20):8693–8699. PubMedGoogle Scholar
  72. Owen JL, Sahay B, Mohamadzadeh M (2013) New generation of oral mucosal vaccines targeting dendritic cells. Curr Opin Chem Biol 17(6):918–924. PubMedGoogle Scholar
  73. Paccez JD, Nguyen HD, Luiz WB, Ferreira RC, Sbrogio-Almeida ME, Schuman W, Ferreira LC (2007) Evaluation of different promoter sequences and antigen sorting signals on the immunogenicity of Bacillus subtilis vaccine vehicles. Vaccine 25(24):4671–4680. PubMedGoogle Scholar
  74. Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Team AQAUai (2018) Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol 37(1):100–115. PubMedGoogle Scholar
  75. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, Martin FP, Cominetti O, Welsh C, Rieder A, Traynor J, Gregory C, De Palma G, Pigrau M, Ford AC, Macri J, Berger B, Bergonzelli G, Surette MG, Collins SM, Moayyedi P, Bercik P (2017) Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology 153(2):448−+ doi:
  76. Radford KJ, Higgins DE, Pasquini S, Cheadle EJ, Carta L, Jackson AM, Lemoine NR, Vassaux G (2002) A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: application to cancer immunotherapy. Gene Ther 9(21):1455–1463. PubMedGoogle Scholar
  77. Rajput IR, Li WF (2012) Potential role of probiotics in mechanism of intestinal immunity. Pak Vet J 32(3):303–308Google Scholar
  78. Remer KA, Bartrow M, Roeger B, Moll H, Sonnenborn U, Oelschlaeger TA (2009) Split immune response after oral vaccination of mice with recombinant Escherichia coli Nissle 1917 expressing fimbrial adhesin K88. Int J Med Microbiol 299(7):467–478. PubMedGoogle Scholar
  79. Ren W, Rajendran R, Zhao Y, Tan B, Wu G, Bazer FW, Zhu G, Peng Y, Huang X, Deng J, Yin Y (2018) Amino acids as mediators of metabolic cross talk between host and pathogen. Front Immunol 9:13. Google Scholar
  80. Rombout J, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immun 31(5):616–626. Google Scholar
  81. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68(2):910–916. PubMedPubMedCentralGoogle Scholar
  82. Russell-Jones GJ (2000) Oral vaccine delivery. J Control Release 65:49–54. PubMedGoogle Scholar
  83. Sanchez B, Bressollier P, Urdaci MC (2008) Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol 54(1):1–17. PubMedGoogle Scholar
  84. Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond Ser B Biol Sci 367(1592):1123–1139. Google Scholar
  85. Seegers J (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20(12):508–515. PubMedGoogle Scholar
  86. Shima H, Watanabe T, Fukuda S, Fukuoka S, Ohara O, Ohno H (2014) A novel mucosal vaccine targeting Peyer’s patch M cells induces protective antigen-specific IgA responses. Int Immunol 26(11):619–625. PubMedGoogle Scholar
  87. Shiner EK, Rumbaugh KP, Williams SC (2005) Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29(5):935–947. PubMedGoogle Scholar
  88. Siegel SD, Reardon ME, Tonthat H (2016) Anchoring of LPXTG-like proteins to the Gram-positive cell wall envelope. Curr Top Microbiol vol 404. Springer-Verlag Berlin, Berlin, pp 159–175 doi:
  89. Simpson HL, Campbell BJ (2015) Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 42(2):158–179. PubMedPubMedCentralGoogle Scholar
  90. Sonnenborn U, Schulze J (2009) The non-pathogenic Escherichia coli strain Nissle 1917 – features of a versatile probiotic. Microb Ecol Health Dis 21(3–4):122–158. Google Scholar
  91. Stout E, Klaenhammer T, Barrangou R (2017) CRISPR-Cas technologies and applications in food bacteria. In: Doyle MP, Klaenhammer TR (eds) Annu Rev Food Sci T, vol 8. Annual Reviews, Palo Alto, pp 413–437Google Scholar
  92. Tam NK, Uyen NQ, Hong HA, Duc le H, Hoa TT, Serra CR, Henriques AO, Cutting SM (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188(7):2692–2700. PubMedPubMedCentralGoogle Scholar
  93. Taylor AL, Hale J, Wiltschut J, Lehmann H, Dunstan JA, Prescott SL (2006) Effects of probiotic supplementation for the first 6 months of life on allergen- and vaccine-specific immune responses. Clin Exp Allergy 36(10):1227–1235. PubMedGoogle Scholar
  94. Van Pijkeren JP, Barrangou R (2017) Genome editing of food-grade Lactobacilli to develop therapeutic probiotics. Microbiol Spectr 5(5):16. CrossRefGoogle Scholar
  95. Velez MP, De Keersmaecker SCJ, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276(2):140–148. PubMedGoogle Scholar
  96. Villena J, Medina MF, Racedo S, Alvarez S (2010) Resistance of young mice to pneumococcal infection can be improved by oral vaccination with recombinant Lactococcus lactis. J Micrbiol Immunol 43(1):1–10. CrossRefGoogle Scholar
  97. Vitini E, Alvarez S, Medina M, Medici M, De Budeguer MV, Perdigon G (2000) Gut mucosal immunostimulation by lactic acid bacteria. Biocell 24(3):223–232PubMedGoogle Scholar
  98. Vogt CM, Schraner EM, Aguilar C, Eichwald C (2016) Heterologous expression of antigenic peptides in Bacillus subtilis biofilms. Microb Cell Factories 15(1):137. Google Scholar
  99. Wang C, Cui Y, Qu X (2018) Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol 200(2):195–201. PubMedGoogle Scholar
  100. Wang HH, Church GM (2011) Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol 498:409–426. PubMedGoogle Scholar
  101. Wang L, Yang Y, Cai B, Cao P, Yang M, Chen Y (2014a) Coexpression and secretion of endoglucanase and phytase genes in Lactobacillus reuteri. Int J Mol Sci 15(7):12842–12860. PubMedPubMedCentralGoogle Scholar
  102. Wang X, Chen W, Tian Y, Mao Q, Lv X, Shang M, Li X, Yu X, Huang Y (2014b) Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 32(12):1338–1345. PubMedGoogle Scholar
  103. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using gaIK selection. Nucleic Acids Res 33(4):12. Google Scholar
  104. Wassenaar TM (2016) Insights from 100 years of research with probiotic E. coli. Eur J Microbiol Immunol (Bp) 6(3):147–161. Google Scholar
  105. Wei XX, Shi ZY, Li ZJ, Cai L, Wu Q, Chen GQ (2010) A mini-Mu transposon-based method for multiple DNA fragment integration into bacterial genomes. Appl Microbiol Biotechnol 87(4):1533–1541. PubMedGoogle Scholar
  106. Wu CD, Zhang J, Chen W, Wang M, Du GC, Chen J (2012) A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biotechnol 93(2):707–722. PubMedGoogle Scholar
  107. Wyszynska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK (2015) Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99(7):2967–2977. PubMedPubMedCentralGoogle Scholar
  108. Yang Y, Yang Y, Ou BM, Xia PP, Zhou MX, Li L, Zhu GQ (2016) The flagellin hypervariable region is a potential flagella display domain in probiotic Escherichia coli strain Nissle 1917. Arch Microbiol 198(7):603–610. PubMedGoogle Scholar
  109. Zhang J, Wu CD, Du GC, Chen J (2012) Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioprocess Eng 17(2):283–289. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Veterinary MedicineYangzhou UniversityYangzhouChina
  2. 2.Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of ChinaYangzhouChina
  3. 3.College of Life ScienceZhaoqing UniversityZhaoqingChina

Personalised recommendations