Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3341–3353 | Cite as

A general platform for efficient extracellular expression and purification of Fab from Escherichia coli

  • Manyu Luo
  • Meiqi Zhao
  • Cedric Cagliero
  • Hua Jiang
  • Yueqing Xie
  • Jianwei Zhu
  • Hui Yang
  • Mengxiao Zhang
  • Ying Zheng
  • Yunsheng Yuan
  • Zixiu Du
  • Huili LuEmail author
Biotechnological products and process engineering


Antigen-binding fragments (Fabs) are an important part of monoclonal antibody (mAb) therapeutics and can be cost-effectively produced using an Escherichia coli (E. coli) expression system. However, Fabs tend to form undesirable aggregates when expressed in the cytoplasm of E. coli, substantially reducing the yield of correctly folded proteins. To solve this problem, in this study, we used five Fab fragments targeting IGF1R, Her2, VEGF, RANKL, and PD-1 to develop a novel system employing the alkaline phosphatase (phoA) promoter and the heat-stable enterotoxin II (STII) leader sequence to facilitate the efficient expression and extracellular secretion of Fabs. Following phosphate starvation, all five Fab fragments were expressed in BL21(DE3), were largely secreted into the culture medium, and then, were further purified by affinity chromatography specific to the constant region of the light chain. The purified Fab products were evaluated and were found to have high purity, antigen-binding affinity, and in vitro bioactivity. The mechanism experiments revealed that (1) BL21(DE3) had significantly higher productivity than the K-12 strains investigated; (2) the secretion ability of the PhoA promoter was superior to that of the T7 promoter; and (3) signal peptide, STII, showed higher extracellular secretion efficiency than pelB. Our findings strongly suggested that the phoA-STII-facilitated extracellular production platform is highly promising for application in the manufacturing of Fab fragments for both academic and industrial purposes.


Fab phoA STII Extracellular production E. coli 


Funding information

This work was supported in part by the National Natural Science Foundation of China (No. 81773621 to Zhu J.) and the Science and Technology Commission of Shanghai Municipality (No. 17431904500 & 17ZR1413700 to Lu H.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal experiments.

Supplementary material

253_2019_9745_MOESM1_ESM.pdf (310 kb)
ESM 1 (PDF 309 kb)


  1. Akiyama Y, Nonomura C, Kondou R, Miyata H, Ashizawa T, Maeda C, Mitsuya K, Hayashi N, Nakasu Y, Yamaguchi K (2016) Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells. Int J Oncol 49(3):1099–1107. CrossRefPubMedGoogle Scholar
  2. Baca M, Presta LG, OConnor SJ, Wells JA (1997) Antibody humanization using monovalent phage display. J Biol Chem 272(16):10678–10684CrossRefGoogle Scholar
  3. Calzone FJ, Cajulis E, Chung YA, Tsai MM, Mitchell P, Lu J, Chen C, Sun J, Radinsky R, Kendall R, Beltran PJ (2013) Epitope-specific mechanisms of IGF1R inhibition by ganitumab. PLoS One 8(2):e55135. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen HH, Li NH, Xie YQ, Jiang H, Yang XY, Cagliero C, Shi SW, Zhu CC, Luo H, Chen JS, Zhang L, Zhao ML, Feng L, Lu HL, Zhu JW (2017) Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli. Appl Microbiol Biotechnol 101(13):5267–5278. CrossRefPubMedGoogle Scholar
  6. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64(5):625–635. CrossRefPubMedGoogle Scholar
  7. Douthwaite JA, Finch DK, Mustelin T, Wilkinson TC (2017) Development of therapeutic antibodies to G protein-coupled receptors and ion channels: opportunities, challenges and their therapeutic potential in respiratory diseases. Pharmacol Ther 169:113–123. CrossRefPubMedGoogle Scholar
  8. Ekerljung L, Wallberg H, Sohrabian A, Andersson K, Friedman M, Frejd FY, Stahl S, Gedda L (2012) Generation and evaluation of bispecific affibody molecules for simultaneous targeting of EGFR and HER2. Bioconjug Chem 23(9):1802–1811. CrossRefPubMedGoogle Scholar
  9. Ellis M, Patel P, Edon M, Ramage W, Dickinson R, Humphreys DP (2017) Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments. Biotechnol Prog 33(1):212–220. CrossRefPubMedGoogle Scholar
  10. Enokizono J, Wikstrom M, Sjobring U, Bjorck L, Forsen S, Arata Y, Kato K, Shimada I (1997) NMR analysis of the interaction between protein L and Ig light chains. J Mol Biol 270(1):8–13. CrossRefPubMedGoogle Scholar
  11. Fujii T, Ohkuri T, Onodera R, Ueda T (2007) Stable supply of large amounts of human Fab from the inclusion bodies in E. coli. J Biochem 141(5):699–707. CrossRefPubMedGoogle Scholar
  12. Gupta SK, Shukla P (2017) Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol 43(1):31–42. CrossRefPubMedGoogle Scholar
  13. Han MJ, Kim JY, Kim JA (2014) Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains. J Biosci Bioeng 117(4):437–442. CrossRefPubMedGoogle Scholar
  14. Humphreys DP, Carrington B, Bowering LC, Ganesh R, Sehdev M, Smith BJ, King LM, Reeks DG, Lawson A, Popplewell AG (2002) A plasmid system for optimization of Fab' production in Escherichia coli: importance of balance of heavy chain and light chain synthesis. Protein Expr Purif 26(2):309–320CrossRefGoogle Scholar
  15. Jalalirad R (2013) Production of antibody fragment (fab) throughout Escherichia coli fed-batch fermentation process: changes in titre, location and form of product. Electron J Biotechnol 16(3):ARTN 15. CrossRefGoogle Scholar
  16. Ji WW, Yu DA, Yang P, Fang P, Cao YX, Li H, Xie N, Yan SS (2017) Recombinant humanized anti-vascular endothelial growth factor monoclonal antibody efficiently suppresses laser-induced choroidal neovascularization in rhesus monkeys. Eur J Pharm Sci 109:624–630. CrossRefPubMedGoogle Scholar
  17. Khalili H, Godwin A, Choi JW, Lever R, Brocchini S (2012) Comparative binding of disulfide-bridged PEG-Fabs. Bioconjug Chem 23(11):2262–2277. CrossRefPubMedGoogle Scholar
  18. Khalili H, Sharma G, Froome A, Khaw PT, Brocchini S (2015) Storage stability of bevacizumab in polycarbonate and polypropylene syringes. Eye (Lond) 29(6):820–827. CrossRefGoogle Scholar
  19. Kim SJ, Ha GS, Lee G, Lim SI, Lee CM, Yang YH, Lee J, Kim JE, Lee JH, Shin Y, Kim CW, Lee DE (2018) Enhanced expression of soluble antibody fragments by low-temperature and overdosing with a nitrogen source. Enzym Microb Technol 115:9–15. CrossRefGoogle Scholar
  20. Linton E, Walsh MK, Sims RC, Miller CD (2012) Translocation of green fluorescent protein by comparative analysis with multiple signal peptides. Biotechnol J 7(5):667–676. CrossRefPubMedGoogle Scholar
  21. Liu C, Zhao Y, He W, Wang W, Chen Y, Zhang S, Ma Y, Gohda J, Ishida T, Walter TS, Owens RJ, Stuart DI, Ren J, Gao B (2015) A RANKL mutant used as an inter-species vaccine for efficient immunotherapy of osteoporosis. Sci Rep 5:14150. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lowe J, Araujo J, Yang J, Reich M, Oldendorp A, Shiu V, Quarmby V, Lowman H, Lien S, Gaudreault J, Maia M (2007) Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp Eye Res 85(4):425–430. CrossRefPubMedGoogle Scholar
  23. Marzan LW, Shimizu K (2011) Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. Microb Cell Factories 10:39. CrossRefGoogle Scholar
  24. Moody G, Beltran PJ, Mitchell P, Cajulis E, Chung YA, Hwang D, Kendall R, Radinsky R, Cohen P, Calzone FJ (2014) IGF1R blockade with ganitumab results in systemic effects on the GH-IGF axis in mice. J Endocrinol 221(1):145–155. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Karwowski W, Lekesiz K, Koc-Żórawska E, Wnuczko K, Borysewicz-Sanczyk H, Naumnik B (2017) Effects of 17β-estradioland raloxifene on endothelial OPG and RANKL secretion. Ginekol Pol 88(4):167-173.
  26. Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27(4):331–337. CrossRefPubMedGoogle Scholar
  27. Nesmeyanova MA, Karamyshev AL, Suzina NE (1991) Secretion of the overproduced periplasmic PhoA protein into the medium and accumulation of its precursor in phoA-transformed Escherichia coli strains: involvement of outer membrane vesicles. World J Microbiol Biotechnol 7:394–406CrossRefGoogle Scholar
  28. Oude Munnink TH, de Vries EG, Vedelaar SR, Timmer-Bosscha H, Schroder CP, Brouwers AH, Lub-de Hooge MN (2012) Lapatinib and 17AAG reduce 89Zr-trastuzumab-F (ab')2 uptake in SKBR3 tumor xenografts. Mol Pharm 9(11):2995–3002. CrossRefPubMedGoogle Scholar
  29. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi EG, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF trap, ranibizumab and bevacizumab. Angiogenesis 15(2):171–185. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Reichert JM (2017) Antibodies to watch in 2017. MAbs 9(2):167–181. CrossRefPubMedGoogle Scholar
  31. Rezaie F, Davami F, Mansouri K, Agha Amiri S, Fazel R, Mahdian R, Davoudi N, Enayati S, Azizi M, Khalaj V (2017) Cytosolic expression of functional fab fragments in Escherichia coli using a novel combination of dual SUMO expression cassette and EnBase(R) cultivation mode. J Appl Microbiol 123:134–144. CrossRefPubMedGoogle Scholar
  32. Shin HD, Chen RR (2008) Extracellular recombinant protein production from an Escherichia coli lpp deletion mutant. Biotechnol Bioeng 101(6):1288–1296. CrossRefPubMedGoogle Scholar
  33. Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, Kocik J, Grudnik P, Tomala M, Krzanik S, Pyrc K, Domling A, Dubin G, Holak TA (2017) Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 8(42):72167–72181. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sun W, Xie J, Lin H, Mi S, Li Z, Hua F, Hu Z (2012) A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif 83(1):21–29. CrossRefPubMedGoogle Scholar
  35. Sun Y, Ye Q, Wu M, Wu Y, Zhang C, Yan W (2016) High yields and soluble expression of superoxide dismutases in Escherichia coli due to the HIV-1 tat peptide via increases in mRNA transcription. Exp Mol Med 48(10):e264. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Thie H, Schirrmann T, Paschke M, Dubel S, Hust M (2008) SRP and sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. New Biotechnol 25(1):49–54. CrossRefGoogle Scholar
  37. Tian X, Yu Q, Wu W, Li X, Dai R (2018) Comparative proteomic analysis of Escherichia coli O157:H7 following ohmic and water bath heating by capillary-HPLC-MS/MS. Int J Food Microbiol 285:42–49. CrossRefPubMedGoogle Scholar
  38. Wang YG, Ding HZ, Du P, Gan RB, Ye Q (2005) Production of phoA promoter-controlled human epidermal growth factor in fed-batch cultures of Escherichia coli YK537 (pAET-8). Process Biochem 40(9):3068–3074. CrossRefGoogle Scholar
  39. Weisser NE, Hall JC (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27(4):502–520. CrossRefPubMedGoogle Scholar
  40. Willard D, Chen WJ, Barrett G, Blackburn K, Bynum J, Consler T, Hoffman C, Horne E, Iannone MA, Kadwell S, Parham J, Ellis B (2000) Expression, purification, and characterization of the human receptor activator of NF-kappaB ligand (RANKL) extracellular domain. Protein Expr Purif 20(1):48–57. CrossRefPubMedGoogle Scholar
  41. Yamanaka H, Izawa H, Okamoto K (2001) Carboxy-terminal region involved in activity of Escherichia coli TolC. J Bacteriol 183(23):6961–6964. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yamanaka H, Kobayashi H, Takahashi E, Okamoto K (2008) MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 190(23):7693–7698. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yu L, Wu X, Cheng Z, Lee CV, LeCouter J, Campa C, Fuh G, Lowman H, Ferrara N (2008) Interaction between bevacizumab and murine VEGF-A: a reassessment. Invest Ophthalmol Vis Sci 49(2):522–527. CrossRefPubMedGoogle Scholar
  44. Zhao XR, Choi KR, Lee SY (2018) Metabolic engineering of Escherichia coli for secretory production of free haem. Nat Catal 1(9):720–728. CrossRefGoogle Scholar
  45. Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G (2018) Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 102(4):1545–1556. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Jecho Laboratories, Inc.FrederickUSA
  3. 3.School of PharmacyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations