Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 9, pp 3627–3636 | Cite as

The antitumor antibiotic rebeccamycin—challenges and advanced approaches in production processes

  • Kathrin Pommerehne
  • Jana Walisko
  • Anna Ebersbach
  • Rainer KrullEmail author
Mini-Review

Abstract

Rebeccamycin is an antibiotic and antitumor substance isolated from the filamentous bacterium Lentzea aerocolonigenes. After its discovery, investigations of rebeccamycin focused on elucidating its structure, biological activity, and biosynthetic pathway. For potential medical application, a sufficient drug supply has to be ensured, meaning that the production process of rebeccamycin plays a major role. In addition to the natural production of rebeccamycin in L. aerocolonigenes, where the complex cell morphology is an important factor for a sufficient production, rebeccamycin can also be heterologously produced or chemically synthesized. Each of these production processes has its own challenges, and first approaches to production often lead to low final product concentrations, which is why process optimizations are performed. This review provides an overview of the production of rebeccamycin and the different approaches used for rebeccamycin formation including process optimizations.

Keywords

Lentzea aerocolonigenes Rebeccamycin Morphology engineering Process optimization 

Notes

Funding information

This study was funded by the German Research Foundation (DFG) in the Priority Programme 1934 DiSPBiotech—Dispersity, structural and phase modifications of proteins and biological agglomerates in biotechnological processes.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015) Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 33:798–811CrossRefGoogle Scholar
  2. Anizon F, Golsteyn RM, Léonce S, Pfeiffer B, Prudhomme M (2009) A three-step synthesis from rebeccamycin of an efficient checkpoint kinase 1 inhibitor. Eur J Med Chem 44:2234–2238CrossRefGoogle Scholar
  3. Bailly C, Colson P, Houssier C, Rodrigues-Pereira E, Prudhomme M, Waring MJ (1998) Recognition of specific sequences in DNA by a topoisomerase I inhibitor derived from the antitumor drug rebeccamycin. Mol Pharmacol 53:77–87CrossRefGoogle Scholar
  4. Bucar F, Wube A, Schmid M (2013) Natural product isolation–how to get from biological material to pure compounds. Nat Prod Rep 30(4):525–545CrossRefGoogle Scholar
  5. Burkart MD (2003) Metabolic engineering—a genetic toolbox for small molecule organic synthesis. Org Biomol Chem 1:1–4CrossRefGoogle Scholar
  6. Burstein HJ, Overmoyer B, Gelman R, Silverman P, Savoie J, Clarke K, Dumadag L, Younger J, Ivy P, Winer EP (2007) Rebeccamycin analog for refractory breast cancer. A randomized phase II trial of dosing schedules. Investig New Drugs 25:161–164CrossRefGoogle Scholar
  7. Bush JA, Long BH, Catino JJ, Bradner WT (1987) Production and biological activity of rebeccamycin, a novel antitumor agent. J Antibiot 40:668–678CrossRefGoogle Scholar
  8. Casini A, Chang FY, Eluere R, King AM, Young EM, Dudley QM, Karim A, Pratt K, Bristol C, Forget A, Ghodasara A, Warden-Rothman R, Gan R, Cristofaro A, Borujeni AE, Ryu MH, Li J, Kwon YC, Wang H, Tatsis E, Rodriguez-Lopez C, O’Connor S, Medema MH, Fischbach MA, Jewett MC, Voigt C, Gordon DB (2018) A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J Am Chem Soc 140:4302–4316CrossRefGoogle Scholar
  9. Driouch H, Roth A, Dersch P, Wittmann C (2010) Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger. Appl Microbiol Biotechnol 87:2011–2024CrossRefGoogle Scholar
  10. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger—targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109:462–471CrossRefGoogle Scholar
  11. Facompré M, Baldeyrou B, Bailly C, Anizon F, Marminon C, Prudhomme M, Colson P, Houssier C (2002) DNA targeting of two new antitumour rebeccamycin derivatives. Eur J Med Chem 37:925–932CrossRefGoogle Scholar
  12. Faul MM, Winneroski LL, Krumrich CA (1999) Synthesis of rebeccamycin and 11-dechlororebeccamycin. J Organomet Chem 64:2465–2470CrossRefGoogle Scholar
  13. Gallant M, Link JT, Danishefsky SJ (1993) A stereoselective synthesis of indole-beta-N-glycosides: an application to the synthesis of rebeccamycin. J Organomet Chem 58:343–349CrossRefGoogle Scholar
  14. Goel S, Wadler S, Hoffman A, Volterra F, Baker C, Nazario E, Ivy P, Silverman A, Mani S (2003) A phase II study of rebeccamycin analog NSC 655649 in patients with metastatic colorectal cancer. Investig New Drugs 21:103–107CrossRefGoogle Scholar
  15. Hille A, Neu TR, Hempel DC, Horn H (2005) Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol Bioeng 92:614–623CrossRefGoogle Scholar
  16. Hussain M, Vaishampayan U, Heilbrun LK, Jain V, LoRusso PM, Ivy P, Flaherty L (2003) A phase II study of rebeccamycin analog (NSC-655649) in metastatic renal cell cancer. Investig New Drugs 21:465–471CrossRefGoogle Scholar
  17. Hyun C-G, Bililign T, Liao J, Thorson JS (2003) The biosynthesis of indolocarbazoles in a heterologous E. coli host. ChemBioChem 4:114–117CrossRefGoogle Scholar
  18. Junker BH, Hesse M, Burgess B, Masurekar P, Connors N, Seeley A (2004) Early phase process scale-up challenges for fungal and filamentous bacterial cultures. Appl Biochem Biotechnol 119:241–277CrossRefGoogle Scholar
  19. Kaneko T, Wong H, Okamoto KT, Clardy J (1985) Two synthetic approaches to rebeccamycin. Tetrahedron Lett 26:4015–4018CrossRefGoogle Scholar
  20. Kaneko T, Wong H, Utzig J, Schurig J, Doyle TW (1990) Water soluble derivatives of rebeccamycin. J Antibiot 43:125–127CrossRefGoogle Scholar
  21. Kaup BA, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99:491–498CrossRefGoogle Scholar
  22. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  23. Krull R, Wucherpfennig T, Eslahpazir Esfandabadi M, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123CrossRefGoogle Scholar
  24. Labeda DP (1986) Transfer of “Nocardia aerocolonigenes” (Shinobu and Kawato 1960) Pridham 1970 into the genus Saccharothrix Labeda, Testa, Lechevalier, and Lechevalier 1984 as Saccharothrix aerocolonigenes sp. nov. Int J Syst Bacteriol 36:109–110CrossRefGoogle Scholar
  25. Labeda DP, Hatano K, Kroppenstedt RM, Tamura T (2001) Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol 51:1045–1050CrossRefGoogle Scholar
  26. Lagmay JP, Krailo MD, Dang H, Kim A, Hawkins DS, Beaty O, Widemann BC, Zwerdling T, Bomgaars L, Langevin A-M, Grier HE, Weigel B, Blaney SM, Gorlick R, Janeway KA (2016) Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through children’s cancer group, pediatric oncology group, and children’s oncology group: learning from the past to move forward. J Clin Oncol 34:3031–3038CrossRefGoogle Scholar
  27. Lam KS, Mattei J, Forenza S (1989) Carbon catabolite regulation of rebeccamycin production in Saccharothrix aerocolonigenes. J Ind Microbiol 4:105–108CrossRefGoogle Scholar
  28. Langevin AM, Bernstein M, Kuhn JG, Blaney SM, Ivy P, Sun J, Chen Z, Adamson PC (2008) A phase II trial of rebeccamycin analogue (NSC #655649) in children with solid tumors: a children’s oncology group study. Pediatr Blood Cancer 50:577–580CrossRefGoogle Scholar
  29. Long B, Rose W, Vyas D, Matson J, Forenza S (2002) Discovery of antitumor indolocarbazoles: Rebeccamycin, NSC 655649, and fluoroindolocarbazoles. Curr Med Chem Anticancer Agents 2:255–266CrossRefGoogle Scholar
  30. Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J (2008) Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 74:3877–3886CrossRefGoogle Scholar
  31. Marminon C, Pierré A, Pfeiffer B, Pérez V, Léonce S, Joubert A, Bailly C, Renard P, Hickman J, Prudhomme M (2003) Syntheses and antiproliferative activities of 7-azarebeccamycin analogues bearing one 7-azaindole moiety. J Med Chem 46:609–622CrossRefGoogle Scholar
  32. Nettleton DE, Jr., Bush JA, Bradner WT, Doyle TW (1985) Process for producing rebeccamycin. US Patent:Patent No 4,552,842Google Scholar
  33. Nock CJ, Brell JM, Bokar JA, Cooney MM, Cooper B, Gibbons J, Krishnamurthi S, Manda S, Savvides P, Remick SC, Ivy P, Dowlati A (2011) A phase I study of rebeccamycin analog in combination with oxaliplatin in patients with refractory solid tumors. Investig New Drugs 29:126–130CrossRefGoogle Scholar
  34. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk H-P, Goodfellow M, Göker M (2018) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007CrossRefGoogle Scholar
  35. Onaka H, Taniguchi SI, Ikeda H, Igarashi Y, Furumai T (2003a) pTOYAMAcos, pTYM18, and pTYM19, actinomycete - Escherichia coli integrating vectors for heterologous gene expression. J Antibiot 56:950–956CrossRefGoogle Scholar
  36. Onaka H, Taniguchi SI, Igarashi Y, Furumai T (2003b) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138CrossRefGoogle Scholar
  37. Onaka H, Ozaki T, Mori Y, Izawa M, Hayashi S, Asamizu S (2015) Mycolic acid-containing bacteria activate heterologous secondary metabolite expression in Streptomyces lividans. J Antibiot 68:594–597CrossRefGoogle Scholar
  38. Oncu S, Tari C, Unluturk S (2007) Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor. Biotechnol Prog 23:836–845CrossRefGoogle Scholar
  39. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259CrossRefGoogle Scholar
  40. Pearce CJ, Doyle TW, Forenza S, Lam KS, Schroeder DR (1988) The biosynthetic origins of rebeccamycin. J Nat Prod 51:937–940CrossRefGoogle Scholar
  41. Pridham TG (1970) New names and new combinations in the order Actinomycetales Buchanan 1917. Technical bulletin 1424. United States Department of Agriculture, US Government Printing Service, Washington DCGoogle Scholar
  42. Prudhomme M (2000) Recent developments of rebeccamycin analogues as topoisomerase I inhibitors and antitumor agents. Curr Med Chem 7:1189–1212CrossRefGoogle Scholar
  43. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206CrossRefGoogle Scholar
  44. Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531CrossRefGoogle Scholar
  45. Sánchez C, Zhu L, Braña AF, Salas AP, Rohr J, Méndez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci U S A 102:461–466CrossRefGoogle Scholar
  46. Sánchez C, Méndez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045CrossRefGoogle Scholar
  47. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108CrossRefGoogle Scholar
  48. Schwandt A, Mekhail T, Halmos B, O’Brien T, Ma PC, Fu P, Ivy P, Dowlati A (2012) Phase-II trial of rebeccamycin analog, a dual topoisomerase-I and -II inhibitor, in relapsed “sensitive” small cell lung cancer. J Thorac Oncol 7:751–754CrossRefGoogle Scholar
  49. Shinobu R, Kawato M (1960) On Streptomyces aerocolonigenes nov. sp., forming the secondary colonies on the aerial mycelia. Bot Mag 73:212–216CrossRefGoogle Scholar
  50. Walisko R, Moench-Tegeder J, Blotenberg J, Wucherpfennig T, Krull R (2015) The taming of the shrew—controlling the morphology of filamentous eukaryotic and prokaryotic microorganisms. Adv Biochem Eng Biotechnol 149:1–27Google Scholar
  51. Walisko J, Vernen F, Pommerehne K, Richter G, Terfehr J, Kaden D, Dähne L, Holtmann D, Krull R (2017) Particle-based production of antibiotic rebeccamycin with Lechevalieria aerocolonigenes. Process Biochem 53:1–9CrossRefGoogle Scholar
  52. Whitaker A (1992) Actinomycetes in submerged culture. Appl Biochem Biotechnol 32:23–35CrossRefGoogle Scholar
  53. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. Adv Appl Microbiol 72:89–136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kathrin Pommerehne
    • 1
    • 2
  • Jana Walisko
    • 1
  • Anna Ebersbach
    • 1
  • Rainer Krull
    • 1
    • 2
    Email author
  1. 1.Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations