Combinatory biotechnological intervention for gut microbiota

Abstract

Individual’s colonization of microbes in the gut is by birth, and there is a complex interaction between the gut microbiome and human. This interaction happens at various levels like genes, transcripts, proteins, and metabolites of different microbes present in the gut. The complete understanding of gut microflora can be studied using systems biology. Further, the contemporaneous information revealed by systems biology can be used for metabolic engineering of gut microbes. The engineered microbes having more pronounced activity helps to rejuvenate the gut microflora that plays a significant role in the management of various life-threatening diseases due to microbial imbalance. This review highlights various systems biology and metabolic engineering approaches. Moreover, this review can also emphasize on the different computational simulation models which can be further used in the efficient engineering of gut microbes. The genetically engineered models can help one to predict the significant pathways present in microbes that can be modified towards diseases treatments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arnold JW, Roach J, Azcarate-Peril MA (2016) Emerging technologies for gut microbiome research. Trends Microbiol 24:887–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bissig K-D, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz F, Zhang Q-Y, Ding X (2018) CYP-humanized and human liver chimeric mouse models for studying xenobiotic metabolism and toxicity. Drug Metab Dispos 46(11):1734–1744

  4. Blakeley-Ruiz JA, Erickson AR, Cantarel BL, Xiong W, Adams R, Jansson JK, Fraser CM, Hettich RL (2019) Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes. Microbiome 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouyanfif A, Jayarathne S, Koboziev I, Moustaid-Moussa N (2019) The nematode Caenorhabditis elegans as a model organism to study metabolic effects of ω-3 polyunsaturated fatty acids in obesity. Adv Nutr 10:165–178

    Article  PubMed  Google Scholar 

  6. Brunkwall L, Orho-Melander M (2017) The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60:943–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan SHJ, Simons M, Maranas CD (2017a) Computational modeling of microbial communities. Syst Biol (Stevenage) 6:163–189

    Article  CAS  Google Scholar 

  8. Chan SHJ, Simons MN, Maranas CD (2017b) SteadyCom: predicting microbial abundances while ensuring community stability. PLoS Comput Biol 13:e1005539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Z, Li J, Gui S, Zhou C, Chen J, Yang C, Hu Z, Wang H, Zhong X, Zeng L (2018) Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. Neuroreport 29:417–425

    Article  CAS  PubMed  Google Scholar 

  10. Coqueiro AY, Raizel R, Bonvini A, Tirapegui J, Rogero MM (2019) Probiotics for inflammatory bowel diseases: a promising adjuvant treatment. Int J Food Sci Nutr 70:20–29

    Article  PubMed  Google Scholar 

  11. Cueva C, Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, González-Paramás AM, Santos-Buelga C, Bartolomé B, Moreno-Arribas M (2017) An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules 22:99

    Article  CAS  PubMed Central  Google Scholar 

  12. Dahiya DK, Puniya M, Shandilya UK, Dhewa T, Kumar N, Kumar S et al (2017) Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol 8:563

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dovrolis N, Kolios G, Spyrou GM, Maroulakou I (2017) Computational profiling of the gut–brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform 1–17

  14. Dupont D, Le Feunteun S, Marze S, Souchon I (2017) Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innov Food Sci Emerg Technol 46:83–90

    Article  CAS  Google Scholar 

  15. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, Shah M, Halfvarson J, Tysk C, Henrissat B (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One 7:e49138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  CAS  PubMed  Google Scholar 

  17. Franke T, Deppenmeier U (2018) Physiology and central carbon metabolism of the gut bacterium Prevotella copri. Mol Microbiol 109(4):528–540

    Article  CAS  PubMed  Google Scholar 

  18. Fujiwara S (2018) Humanized mice: a brief overview on their diverse applications in biomedical research. J Cell Physiol 233:2889–2901

    Article  CAS  PubMed  Google Scholar 

  19. Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788

    Article  CAS  PubMed  Google Scholar 

  20. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535:94–103

    Article  CAS  PubMed  Google Scholar 

  21. Goh YJ, Barrangou R (2019) Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr Opin Biotechnol 56:163–171

    Article  CAS  PubMed  Google Scholar 

  22. Gonze D, Coyte KZ, Lahti L, Faust K (2018) Microbial communities as dynamical systems. Curr Opin Microbiol 44:41–49

    Article  PubMed  Google Scholar 

  23. Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214

    PubMed  PubMed Central  Google Scholar 

  24. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdottir HS, Keating SM, Vlasov V, Wachowiak J (2017) Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3. 0. arXiv Prepr arXiv171004038

  26. Huang Z, Liu Q, Peng Y, Dai J, Xie Y, Chen W, Su H, Yao X (2018) Circadian rhythm dysfunction accelerates disease progression in a mouse model with amyotrophic lateral sclerosis. Front Neurol 9:218

  27. Jing Y, Li A, Liu Z, Yang P, Wei J, Chen X, Zhao T, Bai Y, Zha L, Zhang C (2018) Absorption of Codonopsis pilosula Saponins by Coexisting Polysaccharides Alleviates Gut Microbial Dysbiosis with Dextran Sulfate Sodium-Induced Colitis in Model Mice. Biomed Res Int 2018:1–18

  28. Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klaassens ES, De Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73:1388–1392

    Article  CAS  PubMed  Google Scholar 

  30. Kolmeder CA, De Been M, Nikkilä J, Ritamo I, Mättö J, Valmu L, Salojärvi J, Palva A, Salonen A, de Vos WM (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolmeder CA, Salojärvi J, Ritari J, De Been M, Raes J, Falony G, Vieira-Silva S, Kekkonen RA, Corthals GL, Palva A (2016) Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One 11:e0153294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science (80- ) 356:eaag2770

    Article  CAS  Google Scholar 

  33. Kumar M, Babaei P, Ji B, Nielsen J (2016) Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging 4:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lepczyński A, Herosimczyk A, Ożgo M, Marynowska M, Pawlikowska M, Barszcz M, Taciak M, Skomiał J (2017) Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs–a proteomic study. J Anim Physiol Anim Nutr 101:e225–e236

    Article  CAS  Google Scholar 

  35. Machado D, Andrejev S, Tramontano M, Patil KR (2018) Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res 46(15):7542–7553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jäger C, Baginska J, Wilmes P (2017) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol 35:81

    Article  CAS  PubMed  Google Scholar 

  37. Mann PE, Huynh K, Widmer G (2018) Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes 9:143–154

  38. Martins dos Santos V, Müller M, de Vos WM (2010) Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Curr Opin Biotechnol 21:539–550

    Article  CAS  PubMed  Google Scholar 

  39. Masetti G, Moshkelgosha S, Köhling H-L, Covelli D, Banga JP, Berchner-Pfannschmidt U, Horstmann M, Diaz-Cano S, Goertz G-E, Plummer S (2018) Gut microbiota in experimental murine model of Graves’ orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome 6:97

  40. Mih N, Brunk E, Bordbar A, Palsson BO (2016) A multi-scale computational platform to mechanistically assess the effect of genetic variation on drug responses in human erythrocyte metabolism. PLoS Comput Biol 12:e1005039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohseni AH, Taghinezhad-S S, Keyvani H, Razavilar V (2019) Extracellular overproduction of E7 oncoprotein of Iranian human papillomavirus type 16 by genetically engineered Lactococcus lactis. BMC Biotechnol 19:8

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morgan AE, Mooney KM, Wilkinson SJ, Pickles NA, Mc Auley MT (2017) Investigating cholesterol metabolism and ageing using a systems biology approach. Proc Nutr Soc 76:378–391

    Article  CAS  PubMed  Google Scholar 

  43. Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity–a comprehensive review. Circulation 133:187–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mueller I, Kiedorf G, Runne E, Seidel-Morgenstern A, Hamel C (2018) Synthesis, kinetic analysis and modelling of galacto-oligosaccharides formation. Chem Eng Res Des 130:154–166

    Article  CAS  Google Scholar 

  45. Murfitt SA, Zaccone P, Wang X, Acharjee A, Sawyer Y, Koulman A, Roberts LD, Cooke A, Griffin JL (2018) Metabolomics and Lipidomics Study of Mouse Models of Type 1 Diabetes Highlights Divergent Metabolism in Purine and Tryptophan Metabolism Prior to Disease Onset. J Proteome Res 17:946–960d

  46. Nielsen J (2017) Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab 25:572–579

    Article  CAS  PubMed  Google Scholar 

  47. Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, Fredricks DN, Borenstein E (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 1:e00013–e00015

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pandey V, Gardiol DH, Pepe AC, Hatzimanikatis V (2019) TEX-FBA: a constraint-based method for integrating gene expression, thermodynamics, and metabolomics data into genome-scale metabolic models. bioRxiv 536235

  49. Pattinson CL, Allan AC, Staton SL, Thorpe KJ, Smith SS (2016) Environmental light exposure is associated with increased body mass in children. PLoS One 11:e0143578

    Article  PubMed  PubMed Central  Google Scholar 

  50. Petriz BA, Franco OL (2017) Metaproteomics as a complementary approach to gut microbiota in health and disease. Front Chem 5:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qayyum S, Sharma D, Bisht D, Khan AU (2016) Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochem Biophys Res Commun 474:652–659

    Article  CAS  PubMed  Google Scholar 

  52. Raftis EJ, Delday MI, Cowie P, McCluskey SM, Singh MD, Ettorre A, Mulder IE (2018) Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Sci Rep 8:12024

  53. Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH (2019) Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 16:167–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2017) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24

  56. Sánchez-López E, Kammeijer GSM, Crego AL, Marina ML, Ramautar R, Peters DJM, Mayboroda OA (2019) Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of polycystic kidney disease. Sci Rep 9:806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sartor RB, Wu GD (2017) Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152:327–339

    Article  CAS  PubMed  Google Scholar 

  58. Schnackenberg LK, Beger RD (2006) Monitoring the health to disease continuum with global metabolic profiling and systems biology. Pharmacogenomics 7:1077–1086

    Article  CAS  PubMed  Google Scholar 

  59. Shoaie S, Nielsen J (2014) Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front Genet 5:1–10

    Article  CAS  Google Scholar 

  60. Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K (2016) Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the West Virginian population. Int J Med Sci 13:25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thiele I, Clancy CM, Heinken A, Fleming RMT (2017) Quantitative systems pharmacology and the personalized drug–microbiota–diet axis. Curr Opin Syst Biol 4:43–52

    Article  Google Scholar 

  63. Thor S, Peterson JR, Luthey-Schulten Z (2017) Genome-scale metabolic modeling of archaea lends insight into diversity of metabolic function. Archaea 2017:1–18

    Article  CAS  Google Scholar 

  64. Tomàs-Gamisans M, Ferrer P, Albiol J (2016) Integration and validation of the genome-scale metabolic models of Pichia pastoris: a comprehensive update of protein glycosylation pathways, lipid and energy metabolism. PLoS One 11:e0148031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turroni F, Milani C, Duranti S, Mancabelli L, Mangifesta M, Viappiani A, Lugli GA, Ferrario C, Gioiosa L, Ferrarini A (2016) Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME J 10:1656–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Ark KCH, van Heck RGA, Dos Santos VAPM, Belzer C, de Vos WM (2017) More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome 5:78

    Article  PubMed  PubMed Central  Google Scholar 

  67. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    Article  CAS  PubMed  Google Scholar 

  68. Wahlström A, Sayin SI, Marschall H-U, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50

    Article  CAS  Google Scholar 

  69. Wang H, Marcišauskas S, Sánchez BJ, Domenzain I, Hermansson D, Agren R, Nielsen J, Kerkhoven EJ (2018) RAVEN 2.0: a versatile platform for metabolic network reconstruction and a case study on Streptomyces coelicolor. bioRxiv 321067

  70. Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  71. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, Ursell L, Alm EJ (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10:1669–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilson ID, Nicholson JK (2017) Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 179:204–222

    Article  CAS  Google Scholar 

  73. Yadav R, Shukla P (2017) Probiotics for human health: current progress and applications. In: Recent advances in applied microbiology. Springer, Singapore, pp 133–147

    Google Scholar 

  74. Yadav R, Singh PK, Shukla P (2016) Production of fructooligosaccharides as ingredients of probiotic applications. Microb Biotechnol. Taylor and francis, CRC Press, pp 325–338

  75. Yadav R, Singh PK, Puniya AK, Shukla P (2017) Catalytic interactions and molecular docking of bile salt hydrolase (BSH) from L. plantarum RYPR1 and its prebiotic utilization. Front Microbiol 7:2116

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yadav R, Kumar V, Baweja M, Shukla P (2018a) Gene editing and genetic engineering approaches for advanced probiotics: a review. Crit Rev Food Sci Nutr 58:1735–1746

    Article  CAS  PubMed  Google Scholar 

  77. Yadav R, Singh PK, Shukla P (2018b) Metabolic engineering for probiotics and their genome-wide expression profiling. Curr Protein Pept Sci 19(1):68–74

    CAS  PubMed  Google Scholar 

  78. Yang F, Lyu S, Dong S, Liu Y, Zhang X, Wang O (2016) Expression profile analysis of long noncoding RNA in HER-2-enriched subtype breast cancer by next-generation sequencing and bioinformatics. Onco Targets Ther 9:761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu-Ling T, Lin T-L, Chih-Jung C, Wu T-R, Wei-Fan L, Chia-Chen L, Lai H-C (2019) Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 26(1):3

  80. Zhang X, Deeke SA, Ning Z, Starr AE, Butcher J, Li J, Mayne J, Cheng K, Liao B, Li L (2018a) Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat Commun 9:2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang X, Zhang M, Ho C-T, Guo X, Wu Z, Weng P, Yan M, Cao J (2018b) Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. J Funct Foods 46:268–277

    Article  CAS  Google Scholar 

  82. Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1:718–725

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhu J, Liao M, Yao Z, Liang W, Li Q, Liu J, Yang H, Ji Y, Wei W, Tan A (2018) Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 6:136

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zomorrodi AR, Segrè D (2016) Synthetic ecology of microbes: mathematical models and applications. J Mol Biol 428:837–861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Maharshi Dayanand University, Rohtak, India, for providing infrastructure facility. PS acknowledges the Department of Microbiology, Barkatullah University, Bhopal, India, for their infrastructural support for D.Sc. Work.

Funding

PS acknowledges the grant from DBT, Govt. of India (Grant No. BT/PR27437/BCE/8/1433/2018) and the infrastructural support from the Department of Science and Technology, New Delhi, Govt. of India, FIST grant (Grant No. 1196 SR/FST/LS-I/ 2017/4).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This manuscript does not contain any studies with human or animal participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khangwal, I., Shukla, P. Combinatory biotechnological intervention for gut microbiota. Appl Microbiol Biotechnol 103, 3615–3625 (2019). https://doi.org/10.1007/s00253-019-09727-w

Download citation

Keywords

  • Gut microbiome
  • Systems biology
  • GEMs
  • Metabolic modeling