Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 7, pp 2985–3000 | Cite as

Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger

  • Alma Carolina Gálvez-Iriqui
  • Mario Onofre Cortez-Rocha
  • Armando Burgos-Hernández
  • Montserrat Calderón-Santoyo
  • Waldo Manuel Argüelles-Monal
  • Maribel Plascencia-JatomeaEmail author
Biotechnological products and process engineering
  • 284 Downloads

Abstract

A wide variety of chitosan (CS) biomaterials have been loaded with different antimicrobial agents to improve the activity of CS against phytopathogenic fungi. Recently, the antimicrobial activity of 1H-pyrrole-2-carboxylic acid (PCA) has been reported as a secondary metabolite of Streptomyces griseus, which was identified as the main bioactive compound in the biological control. However, it is sensitive to light and its activity against filamentous fungi has not yet been reported. The aim of the present research work was to evaluate the biological activity of CS-PCA biocomposites for the control of Aspergillus niger. CS-PCA biocomposites were obtained through nanoprecipitation. In vitro antifungal activity was determined by viability assay, spore germination, morphometric analysis of spores and hyphae, and the analysis of cellular components by fluorescence microscopy. CS-PCA showed an average size and Z potential of 502 ± 72 nm and + 54.7 ± 15 mV, respectively. Micrographs demonstrated well-distributed biocomposites with an apparently spherical shape. A new signal at 1473 cm−1 in the FT-IR spectrum of the CS-PCA biocomposite was observed, confirming the presence of PCA in the composition of the CS-PCA nanosystem. CS-PCA biocomposites reduced the spores’ viability by up to 58%. Effects on fungi morphometry, observed as an increase in the spores’ average diameter, swelling, distortion, and an increase in the branching of hyphae, were observed. Fluorescence analysis showed oxidative stress and membrane and cell wall damage, mainly at early growth stages. The inhibitory effect against CS-resistant fungi, such as A. niger, opens a door for the control of CS-sensitive fungi.

Keywords

Antifungal Aspergillus niger Chitosan biocomposites Secondary metabolite Nanoprecipitation 

Notes

Acknowledgments

The study was funded by the Mexican Council for Science and Technology (CONACyT) through the project 219786 at the University of Sonora and for the scholarship to Alma Carolina Gálvez-Iriqui. Special thanks also go to the anonymous referees whose critical analysis of the original manuscript helped to improve the work substantially.

Funding

This study was funded by CONACyT (grant number 219786).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aloui H, Khwaldia K, Licciardello F, Mazzaglia A, Muratore G, Hamdi M, Restuccia C (2014) Efficacy of the combined application of chitosan and locust bean gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. Int J Food Microbiol 170:21–28.  https://doi.org/10.1016/J.IJFOODMICRO.2013.10.017 CrossRefGoogle Scholar
  2. Aranda-Martínez A, López-Moya F, López-Llorca LV (2016) Cell wall composition plays a key role on sensitivity of filamentous fungi to chitosan. J Basic Microbiol 56:1059–1070.  https://doi.org/10.1002/jobm.201500775 CrossRefGoogle Scholar
  3. Arora D, Sharma N, Sharma V, Abrol V, Shankar R, Jaglan S (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100:2603–2615.  https://doi.org/10.1007/s00253-016-7315-0 CrossRefGoogle Scholar
  4. Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299.  https://doi.org/10.1016/J.YRTPH.2009.09.015 CrossRefGoogle Scholar
  5. Batalla-Mayoral J, Cuadros-Moreno A, San Martín-Martínez E (2014) Potencial zeta en la determinación de carga superficial de liposomas. Lat Am J Phys Educ 8(4):4319 1–6. http://www.lajpe.org/dec14/4319_San_Martin.pdf Google Scholar
  6. Chávez-Magdaleno ME, Luque-Alcaraz AG, Gutiérrez-Martínez P, Cortez-Rocha MO, Burgos-Hernández A, Lizardi-Mendoza J, Plascencia-Jatomea M (2018) Effect of chitosan-pepper tree (Schinus molle) essential oil biocomposites on the growth kinetics, viability and membrane integrity of Colletotrichum gloeosporioides. Rev Mex Ing Quim 17:29–45.  https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Chavez CrossRefGoogle Scholar
  7. Chowdappa P, Gowda S, Chethana CS, Madhura S (2014) Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res 8(17):1803–1812.  https://doi.org/10.5897/AJMR2013.6584 CrossRefGoogle Scholar
  8. Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99:2806–2814.  https://doi.org/10.1016/J.BIORTECH.2007.06.044 CrossRefGoogle Scholar
  9. Cota-Arriola O, Cortez-Rocha MO, Rosas-Burgos EC, Burgos-Hernández A, López-Franco YL, Plascencia-Jatomea M (2011) Antifungal effect of chitosan on the growth of Aspergillus parasiticus and production of aflatoxin B1. Polym Int 60:937–944.  https://doi.org/10.1002/pi.3054 CrossRefGoogle Scholar
  10. Cota-Arriola O, Cortez-Rocha MO, Ezquerra-Brauer JM, Lizardi-Mendoza J, Burgos-Hernández A, Robles-Sánchez RM, Plascencia-Jatomea M (2013) Ultrastructural, morphological, and antifungal properties of micro and nanoparticles of chitosan crosslinked with sodium tripolyphosphate. J Polym Environ 21:971–980.  https://doi.org/10.1007/s10924-013-0583-1 CrossRefGoogle Scholar
  11. Cota-Arriola O, Plascencia-Jatomea M, Lizardi-Mendoza J, Robles-Sánchez RM, Ezquerra-Brauer JM, Ruíz-García J, Vega-Acosta JR, Cortez-Rocha MO (2017) Preparation of chitosan matrices with ferulic acid: physicochemical characterization and relationship on the growth of Aspergillus parasiticus. CyTA-J Food 15(1):65–74.  https://doi.org/10.1080/19476337.2016.1213317 Google Scholar
  12. Dalpiaz A, Leo E, Vitali F, Pavan B, Scatturin A, Bortolotti F, Manfredini S, Durini E, Forni F, Brina B, Vandelli MA (2005) Development and characterization of biodegradable nanospheres as delivery systems of anti-ischemic adenosine derivatives. Biomaterials 26:1299–1306.  https://doi.org/10.1016/J.BIOMATERIALS.2004.04.033 CrossRefGoogle Scholar
  13. Dananjaya SHS, Erandani WKCU, Kim C-H, Nikapitiya C, Lee J, De Zoysa M (2017) Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol 105:478–488.  https://doi.org/10.1016/J.IJBIOMAC.2017.07.056 CrossRefGoogle Scholar
  14. Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl Microbiol Biotechnol 100:3813–3824.  https://doi.org/10.1007/s00253-015-7234-5 CrossRefGoogle Scholar
  15. Dietera A, Hamm A, Fiedler H-P, Goodfellow M, Müller WEG, Brun R, Beil W, Bringmann G (2003) Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced by a novel alkaliphilic Streptomyces strain. J Antibiot (Tokyo) 56:639–646CrossRefGoogle Scholar
  16. Fernández-Pan I, Maté JI, Gardrat C, Coma V (2015) Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hydrocoll 51:60–68.  https://doi.org/10.1016/j.foodhyd.2015.04.033 CrossRefGoogle Scholar
  17. Hanaor D, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc 32:235–244.  https://doi.org/10.1016/J.JEURCERAMSOC.2011.08.015 CrossRefGoogle Scholar
  18. Hernández-Téllez CN, Rodríguez-Córdova FJ, Rosas-Burgos EC, Cortez-Rocha MO, Burgos-Hernández A, Lizardi-Mendoza J, Torres-Arreola W, Martínez-Higuera A, Plascencia-Jatomea M (2017) Activity of chitosan–lysozyme nanoparticles on the growth, membrane integrity, and β-1,3-glucanase production by Aspergillus parasiticus. 3 Biotech 7:279.  https://doi.org/10.1007/s13205-017-0913-4 CrossRefGoogle Scholar
  19. Hernández-Téllez CN, Cortez-Rocha MO, Hernández-Burgos A, Rosas-Burgos EC, Lizardi-Mendoza J, Torres-Arreola W, Burboa-Zazueta MG, Plascencia-Jatomea M (2018) Chitosan/carrageenan/lysozyme particles: synthesis, characterization and antifungal activity against Aspergillus parasiticus. Rev Mex Ing Quim 17:897–912.  https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Hernandez CrossRefGoogle Scholar
  20. Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with teir physical properties. Int J Biomater 2012:1–9.  https://doi.org/10.1155/2012/632698 CrossRefGoogle Scholar
  21. Jardim KV, Joanitti GA, Azevedo RB, Parize AL (2015) Physico-chemical characterization and cytotoxicity evaluation of curcumin loaded in chitosan/chondroitin sulfate nanoparticles. Mater Sci Eng C 56:294–304.  https://doi.org/10.1016/J.MSEC.2015.06.036 CrossRefGoogle Scholar
  22. Jia R, Duan Y, Fang Q, Wang X, Huang J (2016) Pyridine-grafted chitosan derivative as an antifungal agent. Food Chem 196:381–387.  https://doi.org/10.1016/j.foodchem.2015.09.053 CrossRefGoogle Scholar
  23. Kaur P, Thakur R, Barnela M, Chopra M, Manuja A, Chaudhury A (2015) Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. J Chem Technol Biotechnol 90(5):867–873.  https://doi.org/10.1002/jctb.4383 CrossRefGoogle Scholar
  24. Khan FI, Rahman S, Queen A, Ahamad S, Ali S, Kim J, Hassan MI (2017) Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 101:3513–3536.  https://doi.org/10.1007/s00253-017-8229-1 CrossRefGoogle Scholar
  25. Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518.  https://doi.org/10.1038/nrmicro2591 CrossRefGoogle Scholar
  26. Liu H, He J (2015) Simultaneous release of hydrophilic and hydrophobic drugs from modified chitosan nanoparticles. Mater Lett 161:415–418.  https://doi.org/10.1016/J.MATLET.2015.09.006 CrossRefGoogle Scholar
  27. Luque-Alcaraz AG, Cortez-Rocha MO, Velázquez-Contreras CA, Acosta-Silva AL, Santacruz-Ortega H del C, Burgos-Hernández A, Argüelles-Monal WM, Plascencia-Jatomea M (2016a) Enhanced antifungal effect of chitosan/pepper tree (Schinus molle) essential oil bionanocomposites on the viability of Aspergillus parasiticus spores. J Nanomater 2016:1–10.  https://doi.org/10.1155/2016/6060137 CrossRefGoogle Scholar
  28. Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM, Higuera-Ciapara I, Argüelles-Monal W (2016b) Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv 6:59250–59256.  https://doi.org/10.1039/C6RA06563E CrossRefGoogle Scholar
  29. Lv Y, Huang H, Yang B, Liu H, Li Y, Wang J (2014) A robust pH-sensitive drug carrier: aqueous micelles mineralized by calcium phosphate based on chitosan. Carbohydr Polym 111:101–107.  https://doi.org/10.1016/J.CARBPOL.2014.04.082 CrossRefGoogle Scholar
  30. Madureira AR, Pereira A, Castro PM, Pintado M (2015) Production of antimicrobial chitosan nanoparticles against food pathogens. J Food Eng 167:210–216.  https://doi.org/10.1016/J.JFOODENG.2015.06.010 CrossRefGoogle Scholar
  31. Martínez-Camacho AP, Cortez-Rocha MO, Graciano-Verdugo AZ, Rodríguez-Félix F, Castillo-Ortega MM, Burgos-Hernández A, Ezquerra-Brauer JM, Plascencia-Jatomea M (2013) Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydr Polym 91:666–674.  https://doi.org/10.1016/J.CARBPOL.2012.08.076 CrossRefGoogle Scholar
  32. Meletiadis J, Mouton JW, Meis JFGM, Bouman BA, Donnelly JP, Verweij PE (2001) Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol 39(9):3402–3408.  https://doi.org/10.1128/JCM.39.9.3402-3408.2001 CrossRefGoogle Scholar
  33. Meshulam T, Levitz SM, Christin L, Diamond RD (1995) A simplified new assay for assessment of fungal cell damage with the tetrazolium dye, (2,3)-bis-(2-methoxy-4-nitro-5-sulphenyl)-(2H)-tetrazolium-5-carboxanilide (XTT). J Infect Dis 172:1153–1156.  https://doi.org/10.1093/infdis/172.4.1153 CrossRefGoogle Scholar
  34. Money NP (1994) Osmotic adjustment and the role of turgor in mycelial fungi. In: Wessels JGH, Meinhardt F (eds) The Mycota, Vol 1. Growth, differentiation and sexuality. Springer, Berlin, pp 67–88CrossRefGoogle Scholar
  35. Nguyen XH, Naing KW, Lee YS, Kim YH, Moon JH, Kim KY (2015) Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici. J Basic Microbiol 55:45–53.  https://doi.org/10.1002/jobm.201300820 CrossRefGoogle Scholar
  36. Owusu-Ansah E, Yavari A, Banerjee U (2008) A protocol for in vivo detection of reactive oxygen species. Protoc Exch 10.  https://doi.org/10.1038/nprot.2008.23
  37. Plascencia-Jatomea M, Viniegra G, Olayo R, Castillo-Ortega MM, Shirai K (2003) Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromol Biosci 3:582–586.  https://doi.org/10.1002/mabi.200350024 CrossRefGoogle Scholar
  38. Plascencia-Jatomea M, Yépiz-Gómez MS, Vélez-Haro JM (2014) Aspergillus spp. (black Mold). In: Bautista- Baños S (ed) Post harvest decay - control strategies, vol 1. Academic Press, USA, pp 267–282.  https://doi.org/10.1016/B978-0-12-411552-1.00008-9 Google Scholar
  39. Pontón J (2008) La pared celular de los hongos y el mecanismo de acción de la anidulafungina. Rev Iberoam Micol 25:78–82CrossRefGoogle Scholar
  40. Prieto C, Calvo L (2013) Performance of the biocompatible surfactant tween 80, for the formation of microemulsions suitable for new pharmaceutical processing. J Appl Chem 2013:1–10.  https://doi.org/10.1155/2013/930356 CrossRefGoogle Scholar
  41. Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotechnol 2:186–201.  https://doi.org/10.1111/j.1751-7915.2008.00080.x CrossRefGoogle Scholar
  42. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683.  https://doi.org/10.1016/J.IJBIOMAC.2013.10.012 CrossRefGoogle Scholar
  43. Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV (2017) In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol 101:3349–3359.  https://doi.org/10.1007/s00253-017-8231-7 CrossRefGoogle Scholar
  44. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, Third ed. Wiley, ChichesterGoogle Scholar
  45. Sowanpreecha R, Rerngsamran P (2018) Biocontrol of orchid-pathogenic mold, Phytophthora palmivora, by antifungal proteins from Pseudomonas aeruginosa RS1. Mycobiology 46(2):129–137.  https://doi.org/10.1080/12298093.2018.1468055 CrossRefGoogle Scholar
  46. Taechowisa T, Chuaychot N, Chanaphat S, Wanbanjob A, Tantiwachw P (2009) Antagonistic effects of Streptomyces sp. SRM1 on Colletotrichum musae. Biotechnology (Faisalabad) 8:86–92.  https://doi.org/10.3923/biotech.2009.86.92 Google Scholar
  47. Takeshita N (2016) Coordinated process of polarized growth in filamentous fungi. Biosci Biotechnol Biochem 80:1693–1699.  https://doi.org/10.1080/09168451.2016.1179092 CrossRefGoogle Scholar
  48. Teodoro RAR, de Barros Fernandes RV, Botrel DA, Borges SV, de Souza AU (2014) Characterization of microencapsulated rosemary essential oil and its antimicrobial effect on fresh dough. Food Bioprocess Technol 7:2560–2569.  https://doi.org/10.1007/s11947-014-1302-1 Google Scholar
  49. Varan NY (2017) Characterization of chitosan particles via attenuated total reflection Fourier transform infrared spectroscopy, conductometric titration, viscosity average molecular weight and X-ray photoelectron spectroscopy. Asian J Chem 29:825–828.  https://doi.org/10.14233/ajchem.2017.20324 CrossRefGoogle Scholar
  50. Vishu Kumar AB, Varadaraj MC, Gowda LR, Tharanathan RN (2005) Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem J 391:167–175.  https://doi.org/10.1042/BJ20050093 CrossRefGoogle Scholar
  51. Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev 35:569–588.  https://doi.org/10.1007/s13593-014-0252-3 CrossRefGoogle Scholar
  52. Xing K, Shen X, Zhu X, Ju X, Miao X, Tian J, Feng Z, Peng X, Jiang J, Qin S (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836.  https://doi.org/10.1016/j.ijbiomac.2015.09.074 CrossRefGoogle Scholar
  53. Zapata-Cuartas JC (2012) Obtención de una nueva serie de compuestos pirrólicos y estudio teórico de su potencial actividad antioxidante. Master Science thesis, Universidad Nacional de Colombia, Medellín, Colombia. http://bdigital.unal.edu.co/6912/
  54. Ziani K, Fernández-Pan I, Royo M, Maté JI (2009) Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll 23:2309–2314.  https://doi.org/10.1016/J.FOODHYD.2009.06.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alma Carolina Gálvez-Iriqui
    • 1
  • Mario Onofre Cortez-Rocha
    • 1
  • Armando Burgos-Hernández
    • 1
  • Montserrat Calderón-Santoyo
    • 2
  • Waldo Manuel Argüelles-Monal
    • 3
  • Maribel Plascencia-Jatomea
    • 1
    Email author
  1. 1.Microbiology and Micotoxins Laboratory, Departamento de Investigación y Posgrado en AlimentosUniversidad de SonoraHermosilloMexico
  2. 2.Integral Laboratory of Food ResearchInstituto Tecnológico de TepicTepicMexico
  3. 3.Biopolymer LaboratoryCentro de Investigación y Desarrollo en Alimentación, A.CHermosilloMexico

Personalised recommendations