Skip to main content
Log in

Bioengineering of microbial transglutaminase for biomedical applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to “glue” meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aeschlimann D (1994) Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost 71:402–415

    CAS  PubMed  Google Scholar 

  • Anami Y, Xiong W, Gui X, Deng M, Zhang CC, Zhang N, An Z, Tsuchikama K (2017) Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Org Biomol Chem 15(26):5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53(10):2613–2617

    CAS  Google Scholar 

  • Bhokisham N, Pakhchanian H, Quan D, Tschirhart T, Tsao C-Y, Payne GF, Bentley WE (2016) Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase. Metab Eng 38:1–9

    Article  CAS  PubMed  Google Scholar 

  • Buettner K, Hertel TC, Pietzsch M (2012) Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids 42(2–3):987–996

    Article  CAS  PubMed  Google Scholar 

  • Caporale A, Selis F, Sandomenico A, Jotti GS, Tonon G, Ruvo M (2015) The LQSP tetrapeptide is a new highly efficient substrate of microbial transglutaminase for the site-specific derivatization of peptides and proteins. Biotechnol J 10(1):154–161

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Janjua R, McDermott MK, Bernstein SL, Steidl SM, Payne GF (2006) Gelatin-based biomimetic tissue adhesive. Potential for retinal reattachment. J Biomed Mater Res B Appl Biomater 77(2):416–422

    Article  PubMed  CAS  Google Scholar 

  • Collighan R, Clara S, Li X, Parry J, Griffin M (2004) Transglutaminases as tanning agents for the leather industry. J Am Leather Chem Assoc 99(7):293–302

    CAS  Google Scholar 

  • Coussons P, Price N, Kelly S, Smith B, Sawyer L (1992) Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J 282(Pt 3):929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damodaran G, Collighan R, Griffin M, Navsaria H, Pandit A (2009a) Tailored laminin-332 α3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion. Acta Biomater 5(7):2441–2450

    Article  CAS  PubMed  Google Scholar 

  • Damodaran G, Collighan R, Griffin M, Pandit A (2009b) Tethering a laminin peptide to a crosslinked collagen scaffold for biofunctionality. J Biomed Mater Res A 89(4):1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Dennler P, Chiotellis A, Fischer E, Brégeon D, Belmant C, Gauthier L, Lhospice F, Romagne F, Schibli R (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug Chem 25(3):569–578

    Article  CAS  PubMed  Google Scholar 

  • Dennler P, Bailey LK, Spycher PR, Schibli R, Fischer E (2015) Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms. ChemBioChem 16(5):861–867

    Article  CAS  PubMed  Google Scholar 

  • Deweid L, Neureiter L, Englert S, Schneider H, Deweid J, Yanakieva D, Sturm J, Bitsch S, Christmann A, Avrutina O (2018) Directed evolution of a bond-forming enzyme: ultrahigh-throughput screening of microbial transglutaminase using yeast surface display. Chem Eur J 24(57):15195–15200

    Article  CAS  PubMed  Google Scholar 

  • Eder J, Fersht AR (1995) Pro-sequence-assisted protein folding. Mol Microbiol 16(4):609–614

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Wu H, Zhou X, Peng M, Tong J, Xie W, Liu S (2014) Transglutaminase-catalyzed grafting collagen on chitosan and its characterization. Carbohydr Polym 105:253–259

    Article  CAS  PubMed  Google Scholar 

  • Farias SE, Strop P, Delaria K, Galindo Casas M, Dorywalska M, Shelton DL, Pons J, Rajpal A (2014) Mass spectrometric characterization of transglutaminase based site-specific antibody–drug conjugates. Bioconjug Chem 25(2):240–250

    Article  CAS  PubMed  Google Scholar 

  • Fernandez JG, Seetharam S, Ding C, Feliz J, Doherty E, Ingber DE (2017) Direct bonding of chitosan biomaterials to tissues using transglutaminase for surgical repair or device implantation. Tissue Eng A 23(3–4):135–142

    Article  CAS  Google Scholar 

  • Fernandez-Gacio A, Uguen M, Fastrez J (2003) Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 21(9):408–414

    Article  CAS  PubMed  Google Scholar 

  • Fiebig D, Schmelz S, Zindel S, Ehret V, Beck J, Ebenig A, Ehret M, Fröls S, Pfeifer F, Kolmar H (2016) Structure of the Dispase autolysis inducing protein from Streptomyces mobaraensis and glutamine cross-linking sites for transglutaminase. J Biol Chem 291:20417–20426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folk J, Chung SI (1985) Transglutaminases. Methods Enzymol 113:358–375

    Article  CAS  PubMed  Google Scholar 

  • Garcia Y, Collighan R, Griffin M, Pandit A (2007) Assessment of cell viability in a three-dimensional enzymatically cross-linked collagen scaffold. J Mater Sci Mater Med 18(10):1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5(15):3071–3077

    Article  CAS  PubMed  Google Scholar 

  • Grootjans JJ, Groenen PJ, de Jong WW (1995) Substrate requirements for transglutaminases. Influence of the amino acid residue preceding the amine donor lysine in a native protein. J Biol Chem 270(39):22855–22858

    Article  CAS  PubMed  Google Scholar 

  • Gundersen MT, Keillor JW, Pelletier JN (2014) Microbial transglutaminase displays broad acyl-acceptor substrate specificity. Appl Microbiol Biotechnol 98(1):219–230

    Article  CAS  PubMed  Google Scholar 

  • Heck T, Faccio G, Richter M, Thöny-Meyer L (2013) Enzyme-catalyzed protein crosslinking. Appl Microbiol Biotechnol 97(2):461–475

    Article  CAS  PubMed  Google Scholar 

  • Ismail NF, Lim TS (2016) Site-specific scFv labelling with invertase via Sortase a mechanism as a platform for antibody-antigen detection using the personal glucose meter. Sci Rep 6:19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, Struthers H, Schibli R (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem 49(51):9995–9997

    Article  CAS  Google Scholar 

  • Jiang Y, Shang Y-P, Li H, Zhang C, Pan J, Bai Y-P, Li C-X, Xu J-H (2017) Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). Bioresour Bioprocess 4(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Juettner NE, Schmelz S, Bogen JP, Happel D, Fessner WD, Pfeifer F, Fuchsbauer HL, Scrima A (2018) Illuminating structure and acyl donor sites of a physiological transglutaminase substrate from Streptomyces mobaraensis. Protein Sci 27(5):910–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi T, Yokoyama K-I, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki E-I (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277(46):44252–44260

    Article  CAS  PubMed  Google Scholar 

  • Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol 59(3):241–250

    Article  CAS  Google Scholar 

  • Kim J-M, Park WH, Min B-M (2005) The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 α3 chain is crucial for integrin α3β1 binding and cell adhesion. Exp Cell Res 304(1):317–327

    Article  CAS  PubMed  Google Scholar 

  • Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Kopelman D, Wu LQ, Hijji K, Attar I, Preiss-Bloom O, Payne GF (2009) Biomimetic sealant based on gelatin and microbial transglutaminase: an initial in vivo investigation. J Biomed Mater Res B Appl Biomater 91(1):5–16

    Article  PubMed  CAS  Google Scholar 

  • Long H, Ma K, Xiao Z, Ren X, Yang G (2017) Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 5:e3665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv F, Cong X, Tang W, Han Y, Tang Y, Liu Y, Su L, Liu M, Jin M, Yi Z (2017) Novel hemostatic agents based on gelatin-microbial transglutaminase mix. Sci China Life Sci 60(4):397–403

    Article  CAS  PubMed  Google Scholar 

  • Marx CK, Hertel TC, Pietzsch M (2008a) Purification and activation of a recombinant histidine-tagged pro-transglutaminase after soluble expression in Escherichia coli and partial characterization of the active enzyme. Enzym Microb Technol 42(7):568–575

    Article  CAS  Google Scholar 

  • Marx CK, Hertel TC, Pietzsch M (2008b) Random mutagenesis of a recombinant microbial transglutaminase for the generation of thermostable and heat-sensitive variants. J Biotechnol 136(3):156–162

    Article  CAS  PubMed  Google Scholar 

  • McDermott MK, Chen T, Williams CM, Markley KM, Payne GF (2004) Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 5(4):1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Mo X, Iwata H, Matsuda S, Ikada Y (2000) Soft tissue adhesive composed of modified gelatin and polysaccharides. J Biomater Sci Polym Ed 11(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends Food Sci Technol 9(5):204–210

    Article  CAS  Google Scholar 

  • Muzzarelli RA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182

    Article  CAS  Google Scholar 

  • Mycek M, Clarke D, Neidle A, Waelsch H (1959) Amine incorporation into insulin as catalyzed by transglutaminase. Arch Biochem Biophys 84(2):528–540

    Article  CAS  PubMed  Google Scholar 

  • O Halloran DM, Collighan RJ, Griffin M, Pandit AS (2006) Characterization of a microbial transglutaminase cross-linked type II collagen scaffold. Tissue Eng 12(6):1467–1474

    Article  CAS  PubMed  Google Scholar 

  • O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Ohtsuka T, Ota M, Nio N, Motoki M (2000a) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors. Biosci Biotechnol Biochem 64(12):2608–2613

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Sawa A, Kawabata R, Nio N, Motoki M (2000b) Substrate specificities of microbial transglutaminase for primary amines. J Agric Food Chem 48(12):6230–6233

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Umezawa Y, Nio N, Kubota K (2001) Comparison of deamidation activity of transglutaminases. J Food Sci 66(1):25–29

    Article  CAS  Google Scholar 

  • Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S, Fuchsbauer HL (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense. FEBS J 257(3):570–576

    CAS  Google Scholar 

  • Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 41(1):386–393

    Article  CAS  PubMed  Google Scholar 

  • Pozzuolo S, Breme U, Salis B, Taylor G, Tonon G, Orsini G (2008) Efficient bacterial expression of fusion proteins and their selective processing by a recombinant Kex-1 protease. Protein Expr Purif 59(2):334–341

    Article  CAS  PubMed  Google Scholar 

  • Rachel NM, Pelletier JN (2013) Biotechnological applications of transglutaminases. Biomolecules 3(4):870–888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rachel NM, Quaglia D, Lévesque É, Charette AB, Pelletier JN (2017) Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements. Protein Sci 26(11):2268–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickert M, Strop P, Lui V, Melton-Witt J, Farias SE, Foletti D, Shelton D, Pons J, Rajpal A (2016) Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci 25(2):442–455

    Article  CAS  PubMed  Google Scholar 

  • Rose JB, Pacelli S, Haj AJE, Dua HS, Hopkinson A, White LJ, Rose FR (2014) Gelatin-based materials in ocular tissue engineering. Materials 7(4):3106–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salis B, Spinetti G, Scaramuzza S, Bossi M, Jotti GS, Tonon G, Crobu D, Schrepfer R (2015) High-level expression of a recombinant active microbial transglutaminase in Escherichia coli. BMC Biotechnol 15(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sang LY, Zhou XH, Yun F, Zhang GL (2010) Enzymatic synthesis of chitosan–gelatin antimicrobial copolymer and its characterisation. J Sci Food Agric 90(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Shimba N, Yokoyama K-I, Suzuki E-I (2002) NMR-based screening method for transglutaminases: rapid analysis of their substrate specificities and reaction rates. J Agric Food Chem 50(6):1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Spolaore B, Raboni S, Ramos Molina A, Satwekar A, Damiano N, Fontana A (2012) Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 51(43):8679–8689

    Article  CAS  PubMed  Google Scholar 

  • Spolaore B, Forzato G, Fontana A (2018) Site-specific derivatization of human interferon β-1a at lysine residues using microbial transglutaminase. Amino Acids:1–10

  • Strop P (2014) Versatility of microbial transglutaminase. Bioconjug Chem 25(5):855–862

    Article  CAS  PubMed  Google Scholar 

  • Strop P, Liu S-H, Dorywalska M, Delaria K, Dushin RG, Tran T-T, Ho W-H, Farias S, Casas MG, Abdiche Y (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Strop P, Dorywalska MG, Rajpal A, Shelton D, Liu S-H, Pons J, Dushin R (2017) Engineered polypeptide conjugates and methods for making thereof using transglutaminase. Google Patents

    Google Scholar 

  • Sugimura Y, Yokoyama K, Nio N, Maki M, Hitomi K (2008) Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. Arch Biochem Biophys 477(2):379–383

    Article  CAS  PubMed  Google Scholar 

  • Tagami U, Shimba N, Nakamura M, K-i Y, E-i S, Hirokawa T (2009) Substrate specificity of microbial transglutaminase as revealed by three-dimensional docking simulation and mutagenesis. Protein Eng Des Sel 22:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi R, Yahiro K, Hayashi K, Goto M, Kamiya N (2016) Protein-grafted polymers prepared through a site-specific conjugation by microbial transglutaminase for an immunosorbent assay. Biomacromolecules 18(2):422–430

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Xiao Y, Luo P, Fan L (2018) Preparation and characterization of C-phycocyanin peptide grafted N-succinyl chitosan by enzyme method. Int J Biol Macromol 113:841–848

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Hirata A, Ishikawa S, Ohta K, Nakamura K-I, Okinami S (2013) Feasibility of using gelatin-microbial transglutaminase complex to repair experimental retinal detachment in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 251(4):1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Yang M-T, Chang C-H, Wang JM, Wu TK, Wang Y-K, Chang C-Y, Li TT (2011) Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense. J Biol Chem 286(9):7301–7307

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Xiao Z, Ren X, Long H, Qian H, Ma K, Guo Y (2016) Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4:e2497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoyama K, Utsumi H, Nakamura T, Ogaya D, Shimba N, Suzuki E, Taguchi S (2010) Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Appl Microbiol Biotechnol 87(6):2087–2096

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Guan Y, Xie X, Huang Y, Tang J (2015) Improved thrombin hemostat using the cross-linked gelatin by microbial transglutaminase. Int J Polym Sci:2015

  • Zhang X, Zhang X-F, Li H-P, Wang L-Y, Zhang C, Xing X-H, Bao C-Y (2014) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98(12):5387–5396

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Shaw AC, Wang J, Chang C-C, Deng J, Su J (2010) A novel high-throughput screening method for microbial transglutaminases with high specificity toward Gln141 of human growth hormone. J Biomol Screen 15(2):206–212

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Li X, Zhao J, Ma S, Ma X, Fan D, Zhu C, Liu Y (2016) A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: its characterization and biocompatibility. Mater Sci Eng C 68:317–326

    Article  CAS  Google Scholar 

  • Zolot RS, Basu S, Million RP (2013) Antibody–drug conjugates. Nat Rev Drug Discov 12(4):259–260

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Malaysian Ministry of Education under the Higher Institutions Centre of Excellence (HICoE) Grant Scheme (311/CIPPM/4401005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Khim Chan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, S.K., Lim, T.S. Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 103, 2973–2984 (2019). https://doi.org/10.1007/s00253-019-09669-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09669-3

Keywords

Navigation