Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 6, pp 2745–2758 | Cite as

Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation

  • Sinead T. Morrin
  • Jonathan A. Lane
  • Mariarosaria Marotta
  • Lars Bode
  • Stephen D. Carrington
  • Jane A. Irwin
  • Rita M. HickeyEmail author
Applied microbial and cell physiology

Abstract

Nutritional intake may influence the intestinal epithelial glycome and in turn the available attachment sites for bacteria. In this study, we tested the hypothesis that bovine colostrum may influence the intestinal cell surface and in turn the attachment of commensal organisms. Human HT-29 intestinal cells were exposed to a bovine colostrum fraction (BCF) rich in free oligosaccharides. The adherence of several commensal bacteria, comprising mainly bifidobacteria, to the intestinal cells was significantly enhanced (up to 52-fold) for all strains tested which spanned species that are found across the human lifespan. Importantly, the changes to the HT-29 cell surface did not support enhanced adhesion of the enteric pathogens tested. The gene expression profile of the HT-29 cells following treatment with the BCF was evaluated by microarray analysis. Many so called “glyco-genes” (glycosyltransferases and genes involved in the complex biosynthetic pathways of glycans) were found to be differentially regulated suggesting modulation of the enzymatic addition of sugars to glycoconjugate proteins. The microarray data was further validated by means of real-time PCR. The current findings provide an insight into how commensal microorganisms colonise the human gut and highlight the potential of colostrum and milk components as functional ingredients that can potentially increase commensal numbers in individuals with lower counts of health-promoting bacteria.

Keywords

Glycosylation Adherence Bifidobacteria Colostrum Modulation Transcriptomics 

Notes

Acknowledgments

The authors would like to thank Dr. John O’ Callaghan for his technical assistance.

Author contributions

The authors’ contributions are as follows: L. B., S. D. C. and R. M. H. conceptualised and designed the study; S. T. M. and J. A. L. conducted the experiments and acquired the data; S. T. M. analysed and interpreted the data; S. T. M. wrote the first draft of the manuscript; S. D. C., L. B., J. A. I., M. M., J. A. L., R. M. H. and S. T. M. critically revised the manuscript and are primarily responsible for the final content.

Funding

Sinead T. Morrin is in receipt of a Teagasc Walsh Fellowship.

Compliance with ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_9642_MOESM1_ESM.pdf (409 kb)
ESM 1 (PDF 408 kb)

References

  1. Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15(1):31–41.  https://doi.org/10.1093/glycob/cwh143 PubMedCrossRefGoogle Scholar
  2. Arslanoglu S, Moro GE, Boehm G (2007) Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr 137(11):2420–2424PubMedCrossRefGoogle Scholar
  3. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G (2008) Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 138(6):1091–1095PubMedCrossRefGoogle Scholar
  4. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157: H7. Infect Immun 72(4):2240–2247PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703PubMedCrossRefGoogle Scholar
  6. Biol-N'garagba MC, Louisot P (2003) Regulation of the intestinal glycoprotein glycosylation during postnatal development: role of hormonal and nutritional factors. Biochimie 85(3–4):331–352PubMedCrossRefGoogle Scholar
  7. Bottacini F, Motherway MOC, Kuczynski J, O’Connell KJ, Serafini F, Duranti S, Milani C, Turroni F, Lugli GA, Zomer A (2014) Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics 15(1):170PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, Benamouzig R, Tomé D, Leonil J (2013) Sequential release of milk protein–derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr 97(6):1314–1323PubMedCrossRefGoogle Scholar
  9. Burrin DG, Wester TJ, Davis TA, Amick S, Heath JP (1996) Orally administered IGF-I increases intestinal mucosal growth in formula-fed neonatal pigs. Am J Physiol Regul Integr Comp Physiol 270(5):R1085–R1091CrossRefGoogle Scholar
  10. Cairns MT, Gupta A, Naughton JA, Kane M, Clyne M, Joshi L (2017) Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by Helicobacter pylori. World J Gastroenterol 23(37):6817–6832PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharm 9(6):737–743CrossRefGoogle Scholar
  12. Castillo-Courtade L, Han S, Lee S, Mian F, Buck R, Forsythe P (2015) Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 70(9):1091–1102PubMedCrossRefGoogle Scholar
  13. Chessa D, Winter MG, Jakomin M, Bäumler AJ (2009) Salmonella enterica serotype Typhimurium Std fimbriae bind terminal α (1, 2) fucose residues in the cecal mucosa. Mol Microbiol 71(4):864–875PubMedCrossRefGoogle Scholar
  14. Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA (2012) Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 55(3):321–327.  https://doi.org/10.1097/MPG.0b013e31824fb899
  15. Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45(4):454–460PubMedCrossRefGoogle Scholar
  16. Collado MC, Grześkowiak Ł, Salminen S (2013) The role of microbiota and probiotics on the gastrointestinal health: prevention of pathogen infections. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for liver and gastrointestinal disease. Academic Press, Cambridge, pp 201–213CrossRefGoogle Scholar
  17. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597PubMedCrossRefGoogle Scholar
  18. Dai D, Nanthkumar NN, Newburg DS, Walker WA (2000) Role of oligosaccharides and glycoconjugates in intestinal host defense. J Pediatr Gastroenterol Nutr 30:S23–S33PubMedCrossRefGoogle Scholar
  19. Duranti S, Milani C, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Mangifesta M, Viappiani A, Sánchez B, Margolles A (2016) Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci Rep 6:23971PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dydensborg AB, Herring E, Auclair J, Tremblay E, Beaulieu J-F (2006) Normalizing genes for quantitative RT-PCR in differentiating human intestinal epithelial cells and adenocarcinomas of the colon. Am J Physiol Gastrointest Liver Physiol 290(5):G1067–G1074PubMedCrossRefGoogle Scholar
  21. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  22. Egan M, Jiang H, Motherway MOC, Oscarson S, van Sinderen D (2016) Identification and characterization of a glycosulfatase-encoding gene cluster in Bifidobacterium breve UCC2003. AEM, Appl Environ Microbiol, pp 02022–02016Google Scholar
  23. Engfer MB, Stahl B, Finke B, Finke B, Sawatzki G, Daniel H (2000) Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 71(6):1589–1596PubMedCrossRefGoogle Scholar
  24. Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51(1):77–84PubMedCrossRefGoogle Scholar
  25. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, van Sinderen D (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci U S A 109(6):2108–2113.  https://doi.org/10.1073/pnas.1115621109 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Freitas M, Axelsson L-G, Cayuela C, Midtvedt T, Trugnan G (2002) Microbial–host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol 118(2):149–161PubMedGoogle Scholar
  27. Fujiwara S, Hashiba H, Hirota T, Forstner JF (2001) Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracellular protein fraction containing BIF of Bifidobacterium longum SBT2928: suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface. Int J Food Microbiol 67:97–106PubMedCrossRefGoogle Scholar
  28. Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M (2012) Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes 3(5):449–454PubMedCrossRefGoogle Scholar
  29. Gabrielli MG, Tomassoni D (2018) Starch-enriched diet modulates the glucidic profile in the rat colonic mucosa. Eur J Nutr 57(3):1109–1121PubMedCrossRefGoogle Scholar
  30. Gagnon M, Berner AZ, Chervet N, Chassard C, Lacroix C (2013) Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods 94(3):274–279PubMedCrossRefGoogle Scholar
  31. Garrido D, Kim JH, German JB, Raybould HE, Mills DA (2011) Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 6(3):e17315PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gilboa-Garber N, Garber N (1989) Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. FEMS Microbiol Rev 5(3):211–221PubMedCrossRefGoogle Scholar
  33. Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S (2000) Human milk oligosaccharides are minimally digested in vitro. J Nutr 130(12):3014–3020PubMedCrossRefGoogle Scholar
  34. González R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE (2008) Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol 74(15):4686–4694PubMedPubMedCentralCrossRefGoogle Scholar
  35. González-Rodríguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, Gueimonde M, Margolles A (2012) Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78(11):3992–3998PubMedPubMedCentralCrossRefGoogle Scholar
  36. Harduin-Lepers A, Krzewinski-Recchi M-A, Colomb F, Foulquier F, Groux-Degroote S, Delannoy P (2012) Sialyltransferases functions in cancers. Front Biosci (Elite Ed) 4:499–515CrossRefGoogle Scholar
  37. Henion TR, Zhou D, Wolfer DP, Jungalwala FB, Hennet T (2001) Cloning of a mouse β1, 3N-acetylglucosaminyltransferase GlcNAc (β1, 3) Gal (β1, 4) Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem 276(32):30261–30269PubMedCrossRefGoogle Scholar
  38. Hesselager MO, Everest-Dass AV, Thaysen-Andersen M, Bendixen E, Packer NH (2016) FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa. Glycobiol 26(6):607–622.  https://doi.org/10.1093/glycob/cww009
  39. Hinderlich S, Weidemann W, Yardeni T, Horstkorte R, Huizing M (2015) UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE): a master regulator of sialic acid synthesis. Top Curr Chem 366:97–137PubMedPubMedCentralCrossRefGoogle Scholar
  40. Holmes E, Ostrander G, Clausen H, Graem N (1987) Oncofetal expression of LeX carbohydrate antigens in human colonic adenocarcinomas. Regulation through type 2 core chain synthesis rather than fucosylation. J Biol Chem 262(23):11331–11338Google Scholar
  41. Hooper LV, Gordon JI (2001) Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11(2):1R–10RPubMedCrossRefGoogle Scholar
  42. Humphries RM, Griener TP, Vogt SL, Mulvey GL, Raivio T, Donnenberg MS, Kitov PI, Surette M, Armstrong GD (2010) N-acetyllactosamine-induced retraction of bundle-forming pili regulates virulence-associated gene expression in enteropathogenic Escherichia coli. Mol Microbiol 76(5):1111–1126Google Scholar
  43. Ingram P, Lovell R, Wood P, Aschaffenburg R, Bartlett S, Kon S, Palmer J, Roy J, Shillam K (1956) Bacterium coli antibodies in colostrum and their relation to calf survival. J Pathol Bacteriol 72(2):561–568CrossRefGoogle Scholar
  44. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A (2010) Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 67(4):357–362PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jedrzejas M (2007) Unveiling molecular mechanisms of bacterial surface proteins: Streptococcus pneumoniae as a model organism for structural studies. Cell Mol Life Sci 64(21):2799–2822PubMedCrossRefGoogle Scholar
  46. Kavanaugh DW, O’Callaghan J, Buttó LF, Slattery H, Lane J, Clyne M, Kane M, Joshi L, Hickey RM (2013) Exposure of Bifidobacterium longum subsp. infantis to milk oligosaccharides increases adhesion to epithelial cells and induces a substantial transcriptional response. PLoS One 8(6):e67224PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kavanaugh D, O’Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM (2015) The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 73(6):359–375PubMedCrossRefGoogle Scholar
  48. King TP, Begbie R, Slater D, McFadyen M, Thom A, Kelly D (1995) Sialylation of intestinal microvillar membranes in newborn, sucking and weaned pigs. Glycobiology 5(5):525–534PubMedCrossRefGoogle Scholar
  49. Kisiela D, Sapeta A, Kuczkowski M, Stefaniak T, Wieliczko A, Ugorski M (2005) Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73(9):6187–6190Google Scholar
  50. Kobata A, Ginsburg V, Tsuda M (1969) Oligosaccharides of human milk. I. Isolation and characterization. Arch Biochem Biophys 130 (1):509-513 Google Scholar
  51. Lane JA, O'Callaghan J, Carrington SD, Hickey RM (2013) Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br J Nutr 110(12):2127–2137.  https://doi.org/10.1017/s0007114513001591 PubMedCrossRefGoogle Scholar
  52. Lenoir D, Ruggiero-Lopez D, Louisot P, Biol MC (1995) Developmental changes in intestinal glycosylation: nutrition-dependent multi-factor regulation of the fucosylation pathway at weaning time. Biochim Biophys Acta 1234(1):29–36PubMedCrossRefGoogle Scholar
  53. Lindén SK, Florin T, McGuckin MA (2008) Mucin dynamics in intestinal bacterial infection. PLoS One 3(12):e3952PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ling X, Linglong P, Weixia D, Hong W (2016) Protective effects of Bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One 11(8):e0161635PubMedPubMedCentralCrossRefGoogle Scholar
  55. LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA (2010) Comparative genomic hybridization of Bifidobacterium longum strains reveals broad conservation of milk utilization genes in subsp. infantis. Appl Environ Microbiol 76(22):7373–7381PubMedPubMedCentralCrossRefGoogle Scholar
  56. Marcos NT, Magalhães A, Ferreira B, Carvalho AS, Mendes N, Gilmartin T, Head SR, Figueiredo C, David L, Santos-Silva F, Reis CA (2008) Helicobacter pylori induces β3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis X. J Clin Invest 118(6):2325–2336PubMedPubMedCentralGoogle Scholar
  57. Mariño K, Lane JA, Abrahams JL, Struwe WB, Harvey DJ, Marotta M, Hickey RM, Rudd PM (2011) Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology 21(10):1317–1330PubMedCrossRefGoogle Scholar
  58. Morrin ST, Owens RA, Le Berre M., Gerlach JQ, Joshi L, Bode L, Irwin JA, Hickey RM (2019) Interrogation of milk-driven changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. J Agric Food Chem.  https://doi.org/10.1021/acs.jafc.8b06484
  59. Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O'Brien F, Flynn K, Casey PG, Munoz JAM (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci 108(27):11217–11222CrossRefGoogle Scholar
  60. Nesser JR, Granato D, Rouvet M, Servin A, Teneberg S, Karlsson KA (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiol 1:1193–1199CrossRefGoogle Scholar
  61. Nishiyama K, Ueno S, Sugiyama M, Yamamoto Y, Mukai T (2016) Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates. Anim Sci J 87(6):809–815PubMedCrossRefGoogle Scholar
  62. O’Callaghan A, Bottacini F, Motherway MC, Van Sinderen D (2015) Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16(1):832PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pilarczyk-Żurek M, Zwolińska-Wcisło M, Mach T, Okoń K, Adamski P, Heczko PB, Mikołajczyk-Cichońska A, Stefański G, Strus M (2017) Influence of Lactobacillus and Bifidobacterium combination on the gut microbiota, clinical course, and local gut inflammation in patients with ulcerative colitis: a preliminary, single-center, open-label study. J Prob Health 5(1):163CrossRefGoogle Scholar
  64. Pokusaeva K, Fitzgerald GF, Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Gen Nutr 6(3):285–306CrossRefGoogle Scholar
  65. Popowska M, Krawczyk-Balska A, Ostrowski R, Desvaux M (2017) InlL from Listeria monocytogenes is involved in biofilm formation and adhesion to mucin. Front Microbiol 8:660PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ringot-Destrez B, Kalach N, Mihalache A, Gosset P, Michalski J-C, Léonard R, Robbe-Masselot C (2017) How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochem Soc Trans 45(2):389–399PubMedCrossRefGoogle Scholar
  67. Rossez Y, Gosset P, Boneca IG, Magalhães A, Ecobichon C, Reis CA, Cieniewski-Bernard C, Joncquel Chevalier Curt M, Léonard R, Maes E (2014) The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis 210(8):1286–1295PubMedCrossRefGoogle Scholar
  68. Ruiz L, Coute Y, Sanchez B, Clara G, Sanchez J-C, Margolles A (2009) The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiol 155(3):957–967Google Scholar
  69. Ruiz L, Gueimonde M, Couté Y, Salminen S, Sanchez J-C, de los Reyes-Gavilán CG, Margolles A (2011) Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiol Lett 314(2):125–130PubMedCrossRefGoogle Scholar
  70. Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A, Sánchez B (2016) Proteinaceous molecules mediating Bifidobacterium-host interactions. Front Microbiol 7:1193PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sarkar A, Mandal S (2016) Bifidobacteria—insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 192:159–171PubMedCrossRefGoogle Scholar
  72. Sawitzky D (1996) Protein-glycosaminoglycan interactions: infectiological aspects. Med Microbiol Immunol 184(4):155–161PubMedCrossRefGoogle Scholar
  73. Sela D, Chapman J, Adeuya A, Kim J, Chen F, Whitehead T, Lapidus A, Rokhsar D, Lebrilla C, German J (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci 105(48):18964–18969PubMedCrossRefGoogle Scholar
  74. Silva SD, Robbe-Masselot C, Ait-Belgnaoui A, Mancuso A, Mercade-Loubière M, Salvador-Cartier C, Gillet M, Ferrier L, Loubière P, Dague E (2014) Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. Am J Physiol Gastrointest Liver Physiol 307(4):G420–G429PubMedCrossRefGoogle Scholar
  75. Singh TP, Malik RK, Kaur G (2016) Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire 41(1):5CrossRefGoogle Scholar
  76. Stanley P (2016) What have we learned from glycosyltransferase knockouts in mice? J Mol Biol 428(16):3166–3182PubMedPubMedCentralCrossRefGoogle Scholar
  77. Suzuki K, Nishiyama K, Miyajima H, Osawa R, Yamamoto Y, Mukai T (2016) Adhesion properties of a putative polymorphic fimbrial subunit protein from Bifidobacterium longum subsp. longum. Biosci Microbiota Food Health 35(1):19–27PubMedCrossRefGoogle Scholar
  78. Swallow DM (2003) Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 37:197–219PubMedCrossRefGoogle Scholar
  79. Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, J-i I, Irimura T (2001) Molecular cloning and characterization of UDP-GlcNAc: lactosylceramide β1, 3-N-acetylglucosaminyltransferase (β3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem 276(25):22032–22040PubMedCrossRefGoogle Scholar
  80. Togayachi A, Kozono Y, Ikehara Y, Ito H, Suzuki N, Tsunoda Y, Abe S, Sato T, Nakamura K, Suzuki M (2010) Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci 107(26):11900–11905PubMedCrossRefGoogle Scholar
  81. Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M (2014) Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol 5 doi: https://doi.org/10.3389/fmicb.2014.00437
  82. Valeriano VD, Bagon BB, Balolong MP, Kang D-K (2016) Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin. J Microbiol 54(7):510–519PubMedCrossRefGoogle Scholar
  83. Van Veen HA, Geerts ME, van Berkel PH, Nuijens JH (2004) The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. Eur J Biochem 271(4):678–684PubMedCrossRefGoogle Scholar
  84. Wada A, Hasegawa M, Wong P-F, Shirai E, Shirai N, Tan L-J, Llanes R, Hojo H, Yamasaki E, Ichinose A (2010) Direct binding of gangliosides to Helicobacter pylori vacuolating cytotoxin (VacA) neutralizes its toxin activity. Glycobiology 20(6):668–678PubMedCrossRefGoogle Scholar
  85. Wadstrom T, Ljungh A (1999) Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: key events in microbial pathogenicity. J Med Microbiol 48(3):223–233PubMedCrossRefGoogle Scholar
  86. Wang B, Yu B, Karim M, Hu H, Sun Y, McGreevy P, Petocz P, Held S, Brand-Miller J (2007) Dietary sialic acid supplementation improves learning and memory in piglets. Am J Clin Nutr 85(2):561–569PubMedCrossRefGoogle Scholar
  87. Watts AM, Cox AJ, Smith PK, Besseling-van der Vaart I, Cripps AW, West NP (2018) A specifically designed multispecies probiotic supplement relieves seasonal allergic rhinitis symptoms. J Altern Complement Med 24(8):833–840PubMedCrossRefGoogle Scholar
  88. Westermann C, Gleinser M, Corr SC, Riedel CU (2016) A critical evaluation of bifidobacterial adhesion to the host tissue. Front Microbiol 7:1220PubMedPubMedCentralCrossRefGoogle Scholar
  89. Whorwell PJ, Altringer L, Morel J, Bond Y, Charbonneau D, O'mahony L, Kiely B, Shanahan F, Quigley EM (2006) Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 101(7):1581–1590PubMedCrossRefGoogle Scholar
  90. Yamanaka H, Hagiwara K, Kirisawa R, Iwai H (2003) Proinflammatory cytokines in bovine colostrum potentiate the mitogenic response of peripheral blood mononuclear cells from newborn calves through IL-2 and CD25 expression. Microbiol Immunol 47(6):461–468PubMedCrossRefGoogle Scholar
  91. Zhao M, Shen C, Ma L (2018) Treatment efficacy of probiotics on atopic dermatitis, zooming in on infants: a systematic review and meta-analysis. Int J Dermatol 57(6):635–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Teagasc Food Research CentreCorkIreland
  2. 2.Veterinary Sciences Centre, School of Veterinary MedicineUniversity College DublinDublin 4Ireland
  3. 3.Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research ExcellenceUniversity of CaliforniaLa JollaUSA

Personalised recommendations