Advertisement

Spotlight on fungal pectin utilization—from phytopathogenicity to molecular recognition and industrial applications

  • Kevin Schmitz
  • Ryan Protzko
  • Lisha Zhang
  • J. Philipp BenzEmail author
Mini-Review
  • 166 Downloads

Abstract

Pectin is a complex polysaccharide with d-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20–25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.

Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.

Keywords

Pectin Bio-based chemicals Phytopathogenicity Gene regulation Filamentous fungi 

Notes

Acknowledgements

We would like to thank Jan van Kan (Wageningen University) and Nils Thieme (TUM) for critically reading the manuscript.

Funding information

Part of this work was funded by grant 031B0342A from the Bundesministerium für Bildung und Forschung (BMBF) to JPB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abbott DA, Zelle RM, Pronk JT, van Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136.  https://doi.org/10.1111/j.1567-1364.2009.00537.x CrossRefPubMedGoogle Scholar
  2. Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21(2):177–181.  https://doi.org/10.1038/nbt777 CrossRefPubMedGoogle Scholar
  3. Alazi E, Niu J, Kowalczyk JE, Peng M, Aguilar Pontes MV, van Kan JAL, Visser J, de Vries RP, Ram AF (2016) The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin. FEBS Lett 590(12):1804–1815.  https://doi.org/10.1002/1873-3468.12211 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alazi E, Khosravi C, Homan TG, du Pre S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ (2017) The pathway intermediate 2-keto-3-deoxy-L-galactonate mediates the induction of genes involved in D-galacturonic acid utilization in Aspergillus niger. FEBS Lett 591(10):1408–1418.  https://doi.org/10.1002/1873-3468.12654 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alazi E, Knetsch T, Di Falco M, Reid ID, Arentshorst M, Visser J, Tsang A, Ram AFJ (2018) Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR. Appl Microbiol Biotechnol 102(6):2723–2736.  https://doi.org/10.1007/s00253-018-8753-7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quevillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collemare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Guldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuveglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Segurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS genetics 7(8):e1002230.  https://doi.org/10.1371/journal.pgen.1002230 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Angel Siles López J, Li Q, Thompson IP (2010) Biorefinery of waste orange peel. Crit Rev Biotechnol 30(1):63–69.  https://doi.org/10.3109/07388550903425201 CrossRefPubMedGoogle Scholar
  8. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198CrossRefPubMedGoogle Scholar
  9. Ashour WE (1954) Pectinase production by Botrytis cinerea and Pythium debaryanum. Trans Br Mycol Soc 37(4):343–352.  https://doi.org/10.1016/S0007-1536(54)80017-9 CrossRefGoogle Scholar
  10. Basenko EY, Pulman JA, Shanmugasundram A, Harb OS, Crouch K, Starns D, Warrenfeltz S,Aurrecoechea C, Stoeckert CJ, Jr., Kissinger JC, Roos DS, Hertz-Fowler C (2018) FungiDB: an integratedbioinformatic resource for fungi and oomycete s. J Fungi (Basel) 4(1):39.  https://doi.org/10.3390/jof4010039
  11. Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wosten HA, de Vries RP (2011) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol 69(1):31–38.  https://doi.org/10.3114/sim.2011.69.03 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RH, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JD, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330(6010):1549–1551.  https://doi.org/10.1126/science.1195203 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150.  https://doi.org/10.1128/aem.69.7.4144-4150.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP (2017) Regulators of plant biomass degradation in ascomycetous fungi. Biotechnol Biofuels 10:152.  https://doi.org/10.1186/s13068-017-0841-x CrossRefPubMedPubMedCentralGoogle Scholar
  15. Benocci T, Aguilar-Pontes MV, Kun RS, Seiboth B, de Vries RP, Daly P (2018) ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei. FEBS Lett 592(1):60–70.  https://doi.org/10.1002/1873-3468.12932 CrossRefPubMedGoogle Scholar
  16. Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR (2014a) A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 91(2):275–299.  https://doi.org/10.1111/mmi.12459 CrossRefPubMedGoogle Scholar
  17. Benz JP, Protzko RJ, Andrich JM, Bauer S, Dueber JE, Somerville CR (2014b) Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnol Biofuels 7(1):20.  https://doi.org/10.1186/1754-6834-7-20 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Biz A, Sugai-Guérios MH, Kuivanen J, Maaheimo H, Krieger N, Mitchell DA, Richard P (2016) The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae. Microb Cell Fact 15(1):144.  https://doi.org/10.1186/s12934-016-0544-1 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bravo Ruiz G, Di Pietro A, Roncero MI (2016) Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum. Mol Plant Pathol 17(3):339–353.  https://doi.org/10.1111/mpp.12283 CrossRefPubMedGoogle Scholar
  20. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Res 344(14):1879–1900.  https://doi.org/10.1016/j.carres.2009.05.021 CrossRefGoogle Scholar
  21. Caracuel Z, Roncero MI, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A (2003) The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48(3):765–779CrossRefPubMedGoogle Scholar
  22. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR (2014) The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42(Database issue):D705–D710.  https://doi.org/10.1093/nar/gkt1029 CrossRefGoogle Scholar
  23. Chen L, Kiely DE (1996) Synthesis of stereoregular head, tail hydroxylated nylons derived from D-glucose. J Org Chem 61(17):5847–5851.  https://doi.org/10.1021/jo960201e CrossRefGoogle Scholar
  24. Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB (2009) Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol 72(6):1316–1333.  https://doi.org/10.1111/j.1365-2958.2009.06689.x CrossRefPubMedGoogle Scholar
  25. Chojnacki S, Cowley A, Lee J, Foix A, Lopez R (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45(W1):W550–W553.  https://doi.org/10.1093/nar/gkx273 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chou CM, Yu FY, Yu PL, Ho JF, Bostock RM, Chung KR, Huang JW, Lee MH (2015) Expression of five endopolygalacturonase genes and demonstration that MfPG1 overexpression diminishes virulence in the brown rot pathogen Monilinia fructicola. PLoS One 10(6):e0132012.  https://doi.org/10.1371/journal.pone.0132012 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Christensen U, Gruben BS, Madrid S, Mulder H, Nikolaev I, de Vries RP (2011) Unique regulatory mechanism for D-galactose utilization in Aspergillus nidulans. Appl Environ Microbiol 77(19):7084–7087.  https://doi.org/10.1128/AEM.05290-11 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J 11:22.  https://doi.org/10.1186/s13065-017-0251-y CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cnossen-Fassoni A, Bazzolli DM, Brommonschenkel SH, Fernandes de Araujo E, de Queiroz MV (2013) The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum. J Microbiol 51(4):461–470.  https://doi.org/10.1007/s12275-013-3078-9 CrossRefPubMedGoogle Scholar
  30. Corbin KR, Byrt CS, Bauer S, DeBolt S, Chambers D, Holtum JAM, Karem G, Henderson M, Lahnstein J, Beahan CT, Bacic A, Fincher GB, Betts NS, Burton RA (2015) Prospecting for energy-rich renewable raw materials: Agave Leaf Case Study. PLoS One 10(8):e0135382.  https://doi.org/10.1371/journal.pone.0135382 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Delourdes M, Polizeli TM, Jorge JA, Terenzi HF (1991) Pectinase production by Neurospora crassa - purification and biochemical characterization of extracellular polygalacturonase activity. J Gen Microbiol 137:1815–1823CrossRefGoogle Scholar
  32. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492.  https://doi.org/10.1007/s00253-011-3473-2 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Doran JB, Cripe J, Sutton M, Foster B (2000) Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. In: Finkelstein M, Davison BH (eds) Twenty-first symposium on biotechnology for fuels and chemicals, Fort Collins, Colorado, 2000. p 141–152Google Scholar
  34. Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11(11):5701–5709CrossRefPubMedPubMedCentralGoogle Scholar
  35. Duplessis S, Hacquard S, Delaruelle C, Tisserant E, Frey P, Martin F, Kohler A (2011) Melampsora larici-populina transcript profiling during germination and timecourse infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy. Mol Plant-Microbe Interact 24(7):808–818.  https://doi.org/10.1094/MPMI-01-11-0006 CrossRefPubMedGoogle Scholar
  36. Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95(3):565–575.  https://doi.org/10.1007/s00253-012-4173-2 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Eerhart AJJE, Faaij APC, Patel MK (2012) Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 5(4):6407.  https://doi.org/10.1039/c2ee02480b CrossRefGoogle Scholar
  38. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505(7482):239–243.  https://doi.org/10.1038/nature12771 CrossRefPubMedGoogle Scholar
  39. Faostat (2013) Production quantities by country. Food and Agricultural Organization of the United Nations, Statics Division, RomeGoogle Scholar
  40. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194.  https://doi.org/10.1038/nature10947 CrossRefPubMedGoogle Scholar
  41. Flutto L (2003) PECTIN | Properties and determination. In: Caballero B, Finglas P, Toldra F (eds) Encyclopedia of food sciences and nutrition. vol 2. Academic Press, Cambridge, pp 4440–4449CrossRefGoogle Scholar
  42. Gao S, Choi GH, Shain L, Nuss DL (1996) Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl Environ Microbiol 62(6):1984–1990PubMedPubMedCentralGoogle Scholar
  43. Garcia-Maceira FI, Di Pietro A, Roncero MI (2000) Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol Plant-Microbe Interact 13(4):359–365.  https://doi.org/10.1094/MPMI.2000.13.4.359 CrossRefPubMedGoogle Scholar
  44. Garcia-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MI (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67(5):2191–2196.  https://doi.org/10.1128/AEM.67.5.2191-2196.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI BioSystems database. Nucleic Acids Res 38(Database issue):D492–D496.  https://doi.org/10.1093/nar/gkp858 CrossRefPubMedGoogle Scholar
  46. Gerschenson LN (2017) The production of galacturonic acid enriched fractions and their functionality. Food Hydrocolloid 68:23–30.  https://doi.org/10.1016/j.foodhyd.2016.11.030 CrossRefGoogle Scholar
  47. Glass NL, Schmoll M, Cate JH, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Ann Rev Microbiol 67:477–498.  https://doi.org/10.1146/annurev-micro-092611-150044 CrossRefGoogle Scholar
  48. Grassin C, Fauquembergue P (1996) Application of pectinases in beverages. Prog Biotechnol 14:453–462Google Scholar
  49. Grohmann K, Baldwin EA, Buslig BS (1994) Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 45–46(1):315–327.  https://doi.org/10.1007/bf02941808 CrossRefPubMedGoogle Scholar
  50. Gruben BS, Zhou M, Wiebenga A, Ballering J, Overkamp KM, Punt PJ, de Vries RP (2014) Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism. Appl Microbiol Biotechnol 98(12):5531–5540.  https://doi.org/10.1007/s00253-014-5607-9 CrossRefPubMedGoogle Scholar
  51. Gruben BS, Makela MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP (2017) Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 18(1):900.  https://doi.org/10.1186/s12864-017-4164-x CrossRefPubMedPubMedCentralGoogle Scholar
  52. Harholt J, Suttangkakul A, Vibe Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153(2):384–395.  https://doi.org/10.1104/pp.110.156588 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hilditch S, Berghall S, Kalkkinen N, Penttila M, Richard P (2007) The missing link in the fungal D-galacturonate pathway: identification of the L-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 282(36):26195–26201.  https://doi.org/10.1074/jbc.M704401200 CrossRefPubMedGoogle Scholar
  54. Huertas-Gonzalez MD, Ruiz-Roldan MC, Garcia Maceira FI, Roncero MI, Di Pietro A (1999) Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum. Curr Genet 35(1):36–40CrossRefPubMedGoogle Scholar
  55. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J (1987) Hexuronate catabolism in Erwinia chrysanthemi. J Bacteriol 169(3):1223–1231CrossRefPubMedPubMedCentralGoogle Scholar
  56. Huisjes EH, de Hulster E, van Dam JC, Pronk JT, van Maris AJ (2012a) Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl Environ Microbiol 78(15):5052–5059.  https://doi.org/10.1128/AEM.07617-11 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Huisjes EH, Luttik MAH, Almering MJH, Bisschops MMM, Dang DHN, Kleerebezem M, Siezen R, van Maris AJA, Pronk JT (2012b) Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for d-galacturonate metabolism. J Biotechnol 162(2-3):303–310.  https://doi.org/10.1016/j.jbiotec.2012.10.003 CrossRefPubMedGoogle Scholar
  58. Isbell HS (1944) Synthesis of vitamin C from pectic substances. J Res Natl Bur Stand 33(1):45.  https://doi.org/10.6028/jres.033.025 CrossRefGoogle Scholar
  59. Isherwood FA, Mapson LW (1956) Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochem J 64(1):13–22CrossRefPubMedPubMedCentralGoogle Scholar
  60. Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H (2001) Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant-Microbe Interact 14(6):749–757.  https://doi.org/10.1094/MPMI.2001.14.6.749 CrossRefPubMedGoogle Scholar
  61. Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood R (eds) Insects and the plant surface. E. Arnold, London, p viii 360 pGoogle Scholar
  62. Jonkers W, Rep M (2009) Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Molecular microbiology 74(5):1100–1113.  https://doi.org/10.1111/j.1365-2958.2009.06922.x CrossRefPubMedGoogle Scholar
  63. Jonkers W, Rodrigues CD, Rep M (2009) Impaired colonization and infection of tomato roots by the Δfrp1 mutant of Fusarium oxysporum correlates with reduced CWDE gene expression. Mol Plant Microbe Interact 22(5):507–518.  https://doi.org/10.1094/MPMI-22-5-0507 CrossRefPubMedGoogle Scholar
  64. Jonkers W, van Kan JAL, Tijm P, Lee YW, Tudzynski P, Rep M, Michielse CB (2011) The FRP1 F-box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens. Mol Plant Pathol 12(6):548–563.  https://doi.org/10.1111/j.1364-3703.2010.00689.x CrossRefPubMedGoogle Scholar
  65. Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, Flügge U-I, Pommerrenig B, Wirsching P, Sauer N, Koch W, Sommer F, Mühlhaus T, Schroda M, Cuin TA, Graus D, Marten I, Hedrich R, Neuhaus HE (2015) Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nat Plants 1:14001.  https://doi.org/10.1038/nplants.2014.1 CrossRefPubMedGoogle Scholar
  66. Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JA, van Kan JAL (2005a) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43(2):213–225CrossRefPubMedGoogle Scholar
  67. Kars I, McCalman M, Wagemakers L, van Kan JAL (2005b) Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6(6):641–652.  https://doi.org/10.1111/j.1364-3703.2005.00312.x CrossRefPubMedGoogle Scholar
  68. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Katoh H, Ohtani K, Yamamoto H, Akimitsu K (2007) Overexpression of a gene encoding a catabolite repression element in Alternaria citri causes severe symptoms of black rot in citrus fruit. Phytopathology 97(5):557–563.  https://doi.org/10.1094/PHYTO-97-5-0557 CrossRefPubMedGoogle Scholar
  70. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76.  https://doi.org/10.1021/cb7002434 CrossRefPubMedGoogle Scholar
  71. Kennedy M, List D, Lu Y, Foo LY, Newman RH, Sims IM, Bain PJS, Hamilton B, Fenton G (1999)Apple pomace and products derived from apple pomace: uses, composition and analysis modern methodsof plant analysis. Food Technol Biotechnol 45 (4) 426–433Google Scholar
  72. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, De Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46(D1):D802–D808.  https://doi.org/10.1093/nar/gkx1011 CrossRefPubMedGoogle Scholar
  73. Khosravi C (2017) Sugar catabolism during growth on plant biomass in Aspergillus. Utrecht University, UtrechtGoogle Scholar
  74. Khosravi C, Kun RS, Visser J, Aguilar-Pontes MV, de Vries RP, Battaglia E (2017) In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR. BMC Microbiol 17(1):214.  https://doi.org/10.1186/s12866-017-1118-z CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kiely DE, Chen L, Lin TH (1994) Simple preparation of hydroxylated nylons—polyamides derived from aldaric acids ACS symposium series. pp 149–158Google Scholar
  76. Klaubauf S, Zhou M, Lebrun MH, de Vries RP, Battaglia E (2016) A novel L-arabinose-responsive regulator discovered in the rice-blast fungus Pyricularia oryzae (Magnaporthe oryzae). FEBS Lett 590(4):550–558.  https://doi.org/10.1002/1873-3468.12070 CrossRefPubMedGoogle Scholar
  77. Klein-Marcuschamer D, Blanch HW (2015) Renewable fuels from biomass: technical hurdles and economic assessment of biological routes. AIChE J 61(9):2689–2701.  https://doi.org/10.1002/aic.14755 CrossRefGoogle Scholar
  78. Koivistoinen OM, Arvas M, Headman JR, Andberg M, Penttila M, Jeffries TW, Richard P (2012) Characterisation of the gene cluster for l-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis. Gene 492(1):177–185.  https://doi.org/10.1016/j.gene.2011.10.031 CrossRefPubMedGoogle Scholar
  79. Kowalczyk JE, Lubbers RJM, Peng M, Battaglia E, Visser J, de Vries RP (2017) Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin. Sci Rep 7(1):12356.  https://doi.org/10.1038/s41598-017-12362-y CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Ann Rev Phytopathol 52:427–451.  https://doi.org/10.1146/annurev-phyto-102313-045831 CrossRefGoogle Scholar
  81. Kuivanen J, Mojzita D, Wang Y, Hilditch S, Penttilä M, Richard P, Wiebe MG (2012) Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid. Appl Environ Microbiol 78(24):8676–8683.  https://doi.org/10.1128/AEM.02171-12 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kuivanen J, Dantas H, Mojzita D, Mallmann E, Biz A, Krieger N, Mitchell D, Richard P (2014) Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger. AMB Express 4(1):33.  https://doi.org/10.1186/s13568-014-0033-z
  83. Kuivanen J, Penttila M, Richard P (2015) Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production. Microb Cell Fact 14:2.  https://doi.org/10.1186/s12934-014-0184-2 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kuivanen J, Wang YMJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Fact 15(1):210.  https://doi.org/10.1186/s12934-016-0613-5 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kwak S, Jin Y-S (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 16(1):82.  https://doi.org/10.1186/s12934-017-0694-9 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lampugnani ER, Khan GA, Somssich M, Persson S (2018) Building a plant cell wall at a glance . J Cell Sci 131(2):jcs207373.  https://doi.org/10.1242/jcs.207373
  88. Lavilla C, Alla A, de Ilarduya AM, Benito E, Garcia-Martin MG, Galbis JA, Munoz-Guerra S (2012) Carbohydrate-based copolyesters made from bicyclic acetalized galactaric acid. J Polym Sci Pol Chem 50(8):1591–1604.  https://doi.org/10.1002/pola.25930 CrossRefGoogle Scholar
  89. Li R, Rimmer R, Buchwaldt L, Sharpe AG, Seguin-Swartz G, Hegedus DD (2004) Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fung Genet Biol 41(8):754–765.  https://doi.org/10.1016/j.fgb.2004.03.002 CrossRefGoogle Scholar
  90. Li J, Xu J, Cai P, Wang B, Ma Y, Benz JP, Tian C (2015) Functional analysis of two l-arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae. Appl Environ Microbiol 81(12):4062–4070.  https://doi.org/10.1128/AEM.00165-15 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Lopez-Perez M, Ballester AR, Gonzalez-Candelas L (2015) Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit. Mol Plant Pathol 16(3):262–275.  https://doi.org/10.1111/mpp.12179 CrossRefPubMedGoogle Scholar
  92. Maldonado MC, Desaad AMS, Callieri D (1989) Catabolite repression of the synthesis of inducible polygalacturonase and pectinesterase by Aspergillus niger sp. Curr Microbiol 18(5):303–306.  https://doi.org/10.1007/Bf01575945 CrossRefGoogle Scholar
  93. Mao Y, Kriegel RM, Bucknall DG (2016) The crystal structure of poly(ethylene furanoate). Polymer 102:308–314.  https://doi.org/10.1016/j.polymer.2016.08.052 CrossRefGoogle Scholar
  94. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391–418.  https://doi.org/10.1007/s10482-006-9085-7 CrossRefPubMedGoogle Scholar
  95. Martens-Uzunova ES, Schaap PJ (2008) An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet Biol 45(11):1449–1457.  https://doi.org/10.1016/j.fgb.2008.08.002 CrossRefPubMedGoogle Scholar
  96. Martens-Uzunova ES, Schaap PJ (2009) Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46(Suppl 1):S170–S179CrossRefPubMedGoogle Scholar
  97. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buee M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marcais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291):1033–1038.  https://doi.org/10.1038/nature08867 CrossRefPubMedGoogle Scholar
  98. Miyara I, Shafran H, Kramer Haimovich H, Rollins J, Sherman A, Prusky D (2008) Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruits. Mol Plant Pathol 9(3):281–291.  https://doi.org/10.1111/j.1364-3703.2007.00462.x CrossRefPubMedGoogle Scholar
  99. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277.  https://doi.org/10.1016/j.pbi.2008.03.006 CrossRefPubMedGoogle Scholar
  100. Mojzita D, Penttila M, Richard P (2010a) Identification of an L-arabinose reductase gene in Aspergillus niger and its role in L-arabinose catabolism. J Biol Chem 285(31):23622–23628.  https://doi.org/10.1074/jbc.M110.113399 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Mojzita D, Wiebe M, Hilditch S, Boer H, Penttilä M, Richard P (2010b) Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate. Appl Environ Microbiol 76(1):169–175.  https://doi.org/10.1128/AEM.02273-09 CrossRefPubMedGoogle Scholar
  102. Moore D, Robson GD, Trinci APJ (2011) 21st century guidebook to fungi. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  103. Morton DW, Kiely DE (2000) Evaluation of the film and adhesive properties of some block copolymer polyhydroxypolyamides from esterified aldaric acids and diamines. J Appl Polym Sci 77(14):3085–3092.  https://doi.org/10.1002/1097-4628(20000929)77:14<3085::aid-app90>3.0.co;2-7 CrossRefGoogle Scholar
  104. Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, Van Droogenbroeck B, Elst K, Sforza S (2016) Pectin content and composition from different food waste streams. Food Chem 201:37–45.  https://doi.org/10.1016/j.foodchem.2016.01.012 CrossRefPubMedGoogle Scholar
  105. van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB (2014) The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Gen Biol 72:34–47.  https://doi.org/10.1016/j.fgb.2014.04.006 CrossRefGoogle Scholar
  106. ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact 11(10):1009–1016CrossRefPubMedGoogle Scholar
  107. ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JAL (2001) Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 33(2):97–105.  https://doi.org/10.1006/fgbi.2001.1269 CrossRefPubMedGoogle Scholar
  108. Nafisi M, Stranne M, Zhang L, van Kan JA, Sakuragi Y (2014) The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Mol Plant Microbe Interact 27(8):781–792.  https://doi.org/10.1094/MPMI-02-14-0036-R CrossRefPubMedGoogle Scholar
  109. Niu J, Alazi E, Reid ID, Arentshorst M, Punt PJ, Visser J, Tsang A, Ram AF (2017) An evolutionarily conserved transcriptional activator-repressor module controls expression of genes for D-galacturonic acid utilization in Aspergillus niger. Genetics 205(1):169–183.  https://doi.org/10.1534/genetics.116.194050 CrossRefPubMedGoogle Scholar
  110. nova-Institute (2015) PULP2VALUE – new € 11,5 Mio BBI JU grant for demonstration project aims for better use of sugarbeet pulp In: Carus M (ed). nova-Institute GmbHGoogle Scholar
  111. Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43.  https://doi.org/10.1017/S0021859605005708 CrossRefGoogle Scholar
  112. Oeser B, Heidrich PM, Muller U, Tudzynski P, Tenberge KB (2002) Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Gen Biol 36(3):176–186CrossRefGoogle Scholar
  113. Paasikallio T, Huuskonen A, Wiebe MG (2017) Scaling up and scaling down the production of galactaric acid from pectin using Trichoderma reesei. Microb Cell Fact 16(1):119.  https://doi.org/10.1186/s12934-017-0736-3 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Paccanaro MC, Sella L, Castiglioni C, Giacomello F, Martinez-Rocha AL, D’Ovidio R, Schafer W, Favaron F (2017) Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Mol Plant Microbe Interact 30(11):886–895.  https://doi.org/10.1094/MPMI-07-17-0179-R CrossRefPubMedGoogle Scholar
  115. Pardo E, Orejas M (2014) The Aspergillus nidulans Zn(II)2Cys6 transcription factor AN5673/RhaR mediates L-rhamnose utilization and the production of alpha-L-rhamnosidases. Microb Cell Fact 13:161.  https://doi.org/10.1186/s12934-014-0161-9 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Parenicová L (2000) Pectinases of Aspergillus niger: a molecular and biochemical characterisation. Doctorate’s Thesis. University of WageningenGoogle Scholar
  117. van Peij NNME, Visser J, de Graaff LH (1998) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27(1):131–142.  https://doi.org/10.1046/j.1365-2958.1998.00666.x CrossRefGoogle Scholar
  118. Penalva MA, Arst HN Jr (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66(3):426–446CrossRefPubMedPubMedCentralGoogle Scholar
  119. Protzko RJ, Latimer L, Martinho Z, deReus E, Seibert T, Benz JP, Dueber JE (2018) Engineering Saccharomyces cerevisiae for citrus peel waste utilization and bioconversion to meso-galactaric acid. Nat Commun 9(1):5059. https://doi.org/10.1038/s41467-018-07589-w
  120. Reider Apel A, Apel AR, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A (2016) Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep 6(1):19512.  https://doi.org/10.1038/srep19512
  121. Richard P, Hilditch S (2009) D-galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol 82(4):597–604.  https://doi.org/10.1007/s00253-009-1870-6 CrossRefPubMedGoogle Scholar
  122. Rivas B, Torrado A, Torre P, Converti A, Domínguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56(7):2380–2387.  https://doi.org/10.1021/jf073388r CrossRefPubMedGoogle Scholar
  123. Rogers LM, Kim YK, Guo W, Gonzalez-Candelas L, Li D, Kolattukudy PE (2000) Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc Natl Acad Sci U S A 97(17):9813–9818.  https://doi.org/10.1073/pnas.160271497 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281.  https://doi.org/10.1016/j.mib.2009.04.004 CrossRefPubMedGoogle Scholar
  125. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454 CrossRefPubMedGoogle Scholar
  126. Saladini M, Ferrari E, Menabue L (2002) Co-ordination of transition metal ions by galactaric acid: a potentiometric and spectroscopic study. J Inorg Biochem 92(2):121–127CrossRefPubMedGoogle Scholar
  127. Scott-Craig JS, Panaccione DG, Cervone F, Walton JD (1990) Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell 2(12):1191–1200.  https://doi.org/10.1105/tpc.2.12.1191 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sella L, Castiglioni C, Paccanaro MC, Janni M, Schafer W, D’Ovidio R, Favaron F (2016) Involvement of fungal pectin methylesterase activity in the interaction between Fusarium graminearum and wheat. Mol Plant-Microbe Interact 29(4):258–267.  https://doi.org/10.1094/MPMI-07-15-0174-R CrossRefPubMedGoogle Scholar
  129. Service USDoAFA (2015) Citrus: World Markets and TradeGoogle Scholar
  130. Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environm Microbiol 63(9):3548–3552Google Scholar
  131. Shiramizu M, Toste FD (2013) Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration. Angew Chem Int Ed Engl 52(49):12905–12909.  https://doi.org/10.1002/anie.201307564 CrossRefPubMedGoogle Scholar
  132. Sloothaak J, Schilders M, Schaap PJ, de Graaff LH (2014) Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose. AMB Express 4:66.  https://doi.org/10.1186/s13568-014-0066-3 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sloothaak J, Odoni DI, Martins Dos Santos VA, Schaap PJ, Tamayo-Ramos JA (2016) Identification of a novel L-rhamnose uptake transporter in the filamentous fungus Aspergillus niger. PLoS Gen 12(12):e1006468.  https://doi.org/10.1371/journal.pgen.1006468 CrossRefGoogle Scholar
  134. Souffriau B, den Abt T, Thevelein JM (2012) Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 586(16):2494–2499.  https://doi.org/10.1016/j.febslet.2012.06.012 CrossRefPubMedGoogle Scholar
  135. Taguchi Y, Oishi A, Iida H (2008) One-step synthesis of dibutyl furandicarboxylates from galactaric acid. Chem Lett 37(1):50–51.  https://doi.org/10.1246/cl.2008.50 CrossRefGoogle Scholar
  136. Tamayo-Ramos JA, Flipphi M, Pardo E, Manzanares P, Orejas M (2012) L-rhamnose induction of Aspergillus nidulans alpha-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake. Microb Cell Fact 11:26.  https://doi.org/10.1186/1475-2859-11-26 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Tao L, Aden A (2009) The economics of current and future biofuels. In Vitro Cell Dev Biol Plant 45(3):199–217.  https://doi.org/10.1007/s11627-009-9216-8 CrossRefGoogle Scholar
  138. Tavares EQP, De Souza AP, Buckeridge MS (2015) How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. J Exp Bot 66(14):4133–4143.  https://doi.org/10.1093/jxb/erv171 CrossRefPubMedGoogle Scholar
  139. Thieme N, Wu VW, Dietschmann A, Salamov AA, Wang M, Johnson J, Singan VR, Grigoriev IV, Glass NL, Somerville CR, Benz JP (2017) The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa. Biotechnol Biofuels 10:149.  https://doi.org/10.1186/s13068-017-0807-z CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14(4):779–790CrossRefPubMedPubMedCentralGoogle Scholar
  141. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Energy. Beneficial biofuels--the food, energy, and environment trilemma. Science 325(5938):270–271.  https://doi.org/10.1126/science.1177970 CrossRefPubMedGoogle Scholar
  142. Todd RB, Zhou M, Ohm RA, Leeggangers HA, Visser L, de Vries RP (2014) Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics 15:214.  https://doi.org/10.1186/1471-2164-15-214 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Tonukari NJ, Scott-Craig JS, Walton JD (2003) Isolation of the carbon catabolite repressor (CREA) gene from the plant-pathogenic fungus Cochliobolus carbonum. DNA Seq 14(2):103–107CrossRefPubMedGoogle Scholar
  144. Tudzynski B, Liu S, Kelly JM (2000) Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. FEMS Microbiol Lett 184(1):9–15CrossRefPubMedGoogle Scholar
  145. Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant-Microbe Interact 16(4):360–367.  https://doi.org/10.1094/MPMI.2003.16.4.360 CrossRefPubMedGoogle Scholar
  146. Vautard G, Cotton P, Fevre M (1999) The glucose repressor CRE1 from Sclerotinia sclerotiorum is functionally related to CREA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae. FEBS Lett 453(1-2):54–58CrossRefPubMedGoogle Scholar
  147. Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28(1):1–12.  https://doi.org/10.1080/07388550801913840 CrossRefPubMedGoogle Scholar
  148. de Vries RP, Pařenicová L (2003) Regulation of pectinolytic gene expression in Aspergillus. In: Voragen F, Schols H, Visser R (eds) Advances in pectin and pectinase research. Springer Netherlands, Dordrecht, pp 169–181CrossRefGoogle Scholar
  149. de Vries RP, Jansen J, Aguilar G, Parenicova L, Joosten V, Wulfert F, Benen JA, Visser J (2002) Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 530(1-3):41–47CrossRefPubMedGoogle Scholar
  150. Wang YT, Fan CF, Hu HZ, Li Y, Sun D, Wang YM, Peng LC (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34(5):997–1017.  https://doi.org/10.1016/j.biotechadv.2016.06.001 CrossRefPubMedGoogle Scholar
  151. Wasserstrom L, Portugal-Nunes D, Almqvist H, Sandstrom AG, Liden G, Gorwa-Grauslund MF (2018) Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express 8(1):33.  https://doi.org/10.1186/s13568-018-0564-9 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wei Y, Shih J, Li J, Goodwin PH (2002) Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. Microbiology 148(Pt 7):2149–2157.  https://doi.org/10.1099/00221287-148-7-2149 CrossRefPubMedGoogle Scholar
  153. Weimberg R (1961) Pentose oxidation by Pseudomonas fragi. J Biol Chem 236:629–635PubMedGoogle Scholar
  154. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I - Results of screening for potential candidates from sugars and synthesis gas.Google Scholar
  155. Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol 110(9):831–840.  https://doi.org/10.1002/ejlt.200800057 CrossRefGoogle Scholar
  156. Witteveen CFB, Busink R, Vandevondervoort P, Dijkema C, Swart K, Visser J (1989) L-Arabinose and D-xylose catabolism in Aspergillus niger. J Gen Microbiol 135:2163–2171Google Scholar
  157. Wubben JP, ten Have A, van Kan JAL, Visser J (2000) Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr Genet 37(2):152–157CrossRefPubMedGoogle Scholar
  158. Xiao C, Anderson CT (2013) Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 4:67.  https://doi.org/10.3389/fpls.2013.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yakoby N, Beno-Moualem D, Keen NT, Dinoor A, Pines O, Prusky D (2001) Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol Plant Microbe Interact 14(8):988–995.  https://doi.org/10.1094/MPMI.2001.14.8.988 CrossRefPubMedGoogle Scholar
  160. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol Biofuels 5:13.  https://doi.org/10.1186/1754-6834-5-13 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Zhang L, van Kan JAL (2013) Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato. Mol Plant Pathol 14(1):19–29.  https://doi.org/10.1111/j.1364-3703.2012.00825.x CrossRefPubMedGoogle Scholar
  162. Zhang L, Thiewes H, van Kan JAL (2011) The D-galacturonic acid catabolic pathway in Botrytis cinerea. Fungal Genet Biol 48(10):990–997.  https://doi.org/10.1016/j.fgb.2011.06.002 CrossRefPubMedGoogle Scholar
  163. Zhang T, Sun X, Xu Q, Candelas LG, Li H (2013) The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Appl Microbiol Biotechnol 97(20):9087–9098.  https://doi.org/10.1007/s00253-013-5129-x CrossRefPubMedGoogle Scholar
  164. Zhang L, Hua C, Stassen JHM, Chatterjee S, Cornelissen M, van Kan JAL (2014) Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters. Fungal Genet Biol 72:182–191.  https://doi.org/10.1016/j.fgb.2013.10.002 CrossRefPubMedGoogle Scholar
  165. Zhang H, Li X, Su X, Ang EL, Zhang Y, Zhao H (2016a) Production of adipic acid from sugar beet residue by combined biological and chemical catalysis. ChemCatChem 8(8):1500–1506.  https://doi.org/10.1002/cctc.201600069 CrossRefGoogle Scholar
  166. Zhang L, Lubbers RJ, Simon A, Stassen JH, Vargas Ribera PR, Viaud M, van Kan JAL (2016b) A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol 100(2):247–262.  https://doi.org/10.1111/mmi.13314 CrossRefPubMedGoogle Scholar
  167. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, Cambridge, pp 97–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Holzforschung München, TUM School of Life Sciences WeihenstephanTechnische Universität MünchenFreisingGermany
  2. 2.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Plant Biochemistry, Centre for Plant Molecular BiologyEberhard Karls University TübingenTübingenGermany

Personalised recommendations