Skip to main content

Advertisement

Log in

Hydroperoxides derived from marine sources: origin and biological activities

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydroperoxides are a small and interesting group of biologically active natural marine compounds. All these metabolites contain a group (R-O-O-H). In this mini-review, studies of more than 80 hydroperoxides isolated from bacteria, fungi, algae, and marine invertebrates are described. Hydroperoxides from the red, brown, and green algae exhibit high antineoplastic, anti-inflammatory, and antiprotozoal activity with a confidence of 73 to 94%. Hydroperoxides produced by soft corals showed antineoplastic and antiprotozoal activity with confidence from 81 to 92%. Metabolites derived from sea sponges, mollusks, and other invertebrates showed antineoplastic and antiprotozoal (Plasmodium) activity with confidence from 80 to 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akakabe Y, Matsui K, Kajiwara T (2001) Enantioselective 2-hydroperoxylation of long-chain fatty acids in marine algae. Fish Sci 67:328–332

    Article  CAS  Google Scholar 

  • Anthoni U, Larsen C, Nielsen PH, Christophersen C (1987) Haphazard isolation of a peroxide from diethyl ether, autoxidation of diethyl ether and structure of mozuku toxin A. Acta Chem Scand B 41:216–218

    Article  Google Scholar 

  • Barlow RB (1979-1980) Structure-activity relationships. Trends Pharmacol Sci 1(1):109–111

  • Berthon JY, Nachat-Kappes R, Bey M, Cadoret JP, Renimel I, Filaire E (2017) Marine algae as attractive source to skin care. Free Radic Res 51(6):555–567

    Article  CAS  PubMed  Google Scholar 

  • Bezhentsev VM, Druzhilovskiy DS, Ivanov SM, Filimonov DA, Sastry GN, Poroikov VV (2017) Web resources for discovery and development of new medicines. Pharm Chem J 51(2):91–99

    Article  CAS  Google Scholar 

  • Bila M, Rasheed T, Sosa-Hernández JE, Raza A, Nabee F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements - a review. Mar Drugs 16(2):65–78

    Article  CAS  Google Scholar 

  • Bonanno G, Orlando-Bonaca M (2018) Chemical elements in Mediterranean macroalgae. A review. Ecotoxicol Environ Saf 148:44–71

    Article  CAS  PubMed  Google Scholar 

  • Bonnard I, Jhaumeer-Laulloo SB, Bontemps N, Banaigs B, Aknin M (2010) New lobane and cembrane diterpenes from two comorian soft corals. Mar Drugs 8:359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonprab K, Matsui K, Akakabe Y, Yotsukura N, Kajiwara T (2004) Arachidonic acid conversion by lipoxygenase in the brown alga, Laminaria angustata. Kasetsart J Nat Sci 38:72–77

    CAS  Google Scholar 

  • Carbone M, Muniain C, Castelluccio F, Iannicelli O, Gavagnin M (2013) First chemical study of the sacoglossan Elysia patagonica: isolation of a γ-pyrone propionate hydroperoxide. Biochem Syst Ecol 49:172–175

    Article  CAS  Google Scholar 

  • Casteel DA (1992) Peroxy natural products. Nat Prod Rep 9:289–312

    Article  CAS  PubMed  Google Scholar 

  • Casteel DA (1999) Peroxy natural products. Nat Prod Rep 16:55–73

    Article  Google Scholar 

  • Catarino MD, Silva AMS, Cardoso SM (2018) Phycochemical constituents and biological activities of Fucus spp. Mar Drugs 16(8):E249. https://doi.org/10.3390/md16080249

    Article  CAS  PubMed  Google Scholar 

  • Chen SP, Chao CH, Huang HC, Wu YC, Lu CK, Dai CF, Sheu JH (2006) New β-caryophyllene-derived terpenoids from the formosan soft coral Sinularia gibberosa. Bull Chem Soc Jpn 79:1547–1551

    Article  CAS  Google Scholar 

  • Chen BW, Wu YC, Chiang MY, Su JH, Wang WH, Fan TY, Sheu JH (2009) Eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Tetrahedron 65:7016–7022

    Article  CAS  Google Scholar 

  • Chen WT, Li Y, Guo YW (2012) Terpenoids of Sinularia soft corals: chemistry and bioactivity. Acta Pharm Sinica B 2(3):227–237

  • Chen SP, Chen BW, Dai CF, Sung P-J, Wu YC, Sheu J-H (2012) Sarcophytonins F and G, new dihydrofuranocembranoids from a dongsha atoll soft coral Sarcophyton sp. Bull Chem Soc Jpn 85(8):920–922

    Article  CAS  Google Scholar 

  • Chen D, Chen W, Liu D, van Ofwegen L, Proksch P, Lin W (2013) Asteriscane-type sesquiterpenoids from the soft coral Sinularia capillosa. J Nat Prod 76(9):1753–1763

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li H, Zhao Z, Xia X, Li B, Zhang J, Yan X (2018) Diterpenes from the marine algae of the genus Dictyota. Mar Drugs 16(5). https://doi.org/10.3390/md16050159

  • Cheng SY, Dai CF, Duh CY (2007) Sesquiterpenoids and artificial 19-oxygenated steroids from the formosan soft coral Nephthea erecta. J Nat Prod 70:1449–1453

    Article  CAS  PubMed  Google Scholar 

  • Cheong KL, Qiu HM, Du H, Liu Y, Khan BM (2018) Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications. Molecules 23(10):E2451. https://doi.org/10.3390/molecules23102451

    Article  CAS  PubMed  Google Scholar 

  • Ciavatta ML, Manzo E, Mollo E, Mattia CA, Tedesco C, Irace C, Guo Y-W, Li X-B, Cimino G, Gavagnin M (2011) Tritoniopsins A–D, cladiellane-based diterpenes from the South China Sea nudibranch Tritoniopsis elegans and its prey Cladiella krempfi. J Nat Prod 74(9):1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Cole KM, Sheath RG (1990) Biology of the red algae. Cambridge University Press, New York, p 517

    Google Scholar 

  • Cutignano A, Fontana A, Renzulli L, Cimino G (2003) Placidenes C−F, novel α-pyrone propionates from the Mediterranean sacoglossan Placida dendritica. J Nat Prod 66:1399–1401

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35(1):1–51

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2006a) Natural neo acids and neo alkanes: their analogs and derivatives. Lipids 41(4):309–340

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2006b) Biogenic iodine and iodine-containing metabolites. Nat Prod Commun 1:139–175

    CAS  Google Scholar 

  • Dembitsky VM (2008) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43:223–251

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2014) Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 21(12):1559–1581

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2015a) Bioactive fungal endoperoxides. Medical Mycol 1(5):1–7

    Google Scholar 

  • Dembitsky VM (2015b) Natural hydroperoxides as potential terapeutical agents. SDRP J Plant Sci 1:1–9

    Google Scholar 

  • Dembitsky VM (2015c) Astonishing diversity of natural peroxides as potential therapeutic agents. J Mol Genet Med 9:1–18

    Google Scholar 

  • Dembitsky VM (2017a) Paradigm shifts in fungal secondary metabolite research: unusual fatty acids incorporated into fungal peptides. Int J Curr Res Biosci Plant Biol 4(12):7–29

    Article  CAS  Google Scholar 

  • Dembitsky VM (2017b) Unusual fatty acids incorporated into natural peptides derived from seaweeds and invertebrates. Eur J Biomed Pharm Sci 4(12):66–84

    CAS  Google Scholar 

  • Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43(5):403–448

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Maoka T (2007) Allenic and cumulenic lipids. Prog Lipid Res 46(6):328–375

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1993) Phospholipid composition of some marine red algae. Phytochemistry 29:3149–3152

    Article  Google Scholar 

  • Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41(4):315–336

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Rozentsvet OA, Pechenkina EE (1990) Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 29(11):3417–3421

    Article  CAS  Google Scholar 

  • Dembitsky VM, Pechenkina-Shubina EE, Rozentsvet OA (1991) Glycolipids and fatty acids of some seaweeds and marine grasses from the Black Sea. Phytochemistry 30(7):2279–2283

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezankova H, Rezanka T, Hanus LO (2003) Variability of the fatty acids of the marine green algae belonging to the genus Codium. Biochem Syst Ecol 31:1125–1145

    Article  CAS  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini Rev Med Chem 7(6):571–589

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Savidov N, Poroikov VV, Gloriozova TA, Imbs AB (2018) Naturally occurring aromatic steroids and their biological activities. Appl Microbiol Biotechnol 102(11):4663–4674

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (2001) Medicinal natural products. A Biosynthetic Approach. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Duh CY, Chia MC, Wang SK, Chen HJ, El-Gamal AAH, Dai CF (2001) Cytotoxic dolabellane diterpenes from the formosan soft coral Clavularia inflate. J Nat Prod 64:1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Duh CY, El-Gamal AA, Chiang CY, Chu CJ, Wang SK, Dai CF (2002) New cytotoxic xenia diterpenoids from the Formosan soft coral Xenia umbellata. J Nat Prod 65(12):1882–1885

    Article  CAS  PubMed  Google Scholar 

  • Edwards M (2008) Green algae strategy: end biowar I and engineer sustainable food and biofuels paperback. Talent DNA, pp. 224

  • El-Gamal AAH, Wang SK, Dai CF, Chen IG, Duh CY (2005) Prenylbicyclogermacrane diterpenoids from the formosan soft coral Nephthea pacifica. J Nat Prod 68:74–77

    Article  CAS  PubMed  Google Scholar 

  • Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457

    Article  CAS  Google Scholar 

  • Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, Pogodin PV, Poroikov VV (2018) Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biom Chem Res Method 1(1):e00004

    Article  Google Scholar 

  • Flowers AE, Garson MJ, Byriel KA, Kennard CHL (1998) Two new isonakafurans from the Great Barrier Reef sponge Dysidea sp. nov. Aust J Chem 51:195–200

    Article  CAS  Google Scholar 

  • Fu X, Hong EP, Schmitz FJ (2000) New polypropionate pyrones from the Philippine sacoglossan mollusc Placobranchus ocellatus. Tetrahedron 56:8989–8993

    Article  CAS  Google Scholar 

  • Fusetani N, Hashimoto K (1981) Diethyl peroxides. Probably responsible for mozuku poisoning. Bull Jpn Soc Sci Fish 47:1059–1063

    Article  CAS  Google Scholar 

  • Girotti AW, Korytowski W (2017) Cholesterol hydroperoxide generation, translocation, and reductive rurnover in biological systems. Cell Biochem Biophys 75:413. https://doi.org/10.1007/s12013-017-0799-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez E, Johnson KM, Pallan PS, Phan TTN, Zhang W, Lei L, Wawrzak Z, Yoshimoto FK, Egli M, Guengerich FP (2018) Inherent steroid 17α,20-lyase activity in defunct cytochrome P450 17A enzymes. J Biol Chem 293(2):541–556

    Article  CAS  PubMed  Google Scholar 

  • Guyot M, Morel E, Belaud C (1983) A cytotoxic hydroperoxide of marine origin and related compounds: synthesis and biological study. J Chem Res 8:1823–1833

    Google Scholar 

  • Harizani M, Ioannou E, Roussis V (2016) The Laurencia paradox: an endless source of chemodiversity. Prog Chem Org Nat Prod 102:91–252

    CAS  PubMed  Google Scholar 

  • Harvis CA, Burch MT, Fenical W (1988) New marine diterpenoids, including a unique hydroperoxide, from a Caribbean gorgonian coral of the genus Pseudopterogorgia. Tetrahedron Lett 29:4361–4364

    Article  CAS  Google Scholar 

  • He Z, Zhang A, Ding L, Lei X, Sun J (2010) Chemical composition of the green alga Codium divaricatum Holmes. Fitoterapia 81:1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Howard BM, Fenical W, Finer J, Hirotsu K, Clardy J (1977) Neoconcinndiol hydroperoxide, a novel marine diterpenoid from the red alga Laurencia. J Am Chem Soc 99:6440–6441

    Article  CAS  PubMed  Google Scholar 

  • Huang AHC (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol 176(3):1894–1918

    Article  CAS  PubMed  Google Scholar 

  • Huang C-Y, Su J-H, Chen B-W, Wen Z-H, Hsu C-H, Dai C-F, Sheu J-H, Sung P-J (2011) Nardosinane-type sesquiterpenoids from the formosan soft coral Paralemnalia thyrsoides. Mar Drugs 9(9):1543–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikawa M, Sasner JJ, Haney JF (2001) Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia 443:19–22

    Article  CAS  Google Scholar 

  • Ismail FMD, Levitsky DO, Dembitsky VM (2009) Aziridine alkaloids as potential therapeutic agents. Eur J Med Chem 44(9):3373–3387

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Abraham I, Carvalho P, Kuang YH, Shaala LA, Youssef DTA, Avery MA, Chen ZS, El Sayed KA (2009) Sipholane triterpenoids: chemistry, reversal of ABCB1/P-glycoprotein-mediated multidrug resistance, and pharmacophore modeling. J Nat Prod 72:1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Ji NY, Li XM, Li K, Wang BG (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C(15)-acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 70:1499–1502

    Article  CAS  PubMed  Google Scholar 

  • Kilimnik A, Dembitsky VM (2016) Anti-melanoma agents derived from fungal species. Mathews J Pharm Sci 1(1):1–16

    Google Scholar 

  • Kim SK, Ta QV (2011) Potential beneficial effects of marine algal sterols on human health. Adv Food Nutr Res 64:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kim AD, Lee Y, Kang SH, Kim GY, Kim HS, Hyun JW (2013) Cytotoxic effect of clerosterol isolated from Codium fragile on A2058 human melanoma cells. Mar Drugs 11:418–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa I, Cui Z, Son BW, Kobayashi M, Kyogoku Y (1987) Marine natural products. XVII. Nephtheoxydiol, a new cytotoxic hydroperoxy-germacrane sesquiterpene, and related sesquiterpenoids from an Okinawan soft coral of Nephthea sp. (Nephtheidae). Chem Pharm Bull (Tokyo) 35(1):124–135

    Article  CAS  Google Scholar 

  • Kobayashi M, Son BW, Kyogoku Y, Kitagawa I (1984) Clavukerin C, a new trinor-guaiane sesquiterpene having a hydroperoxy function, from the Okinawan soft coral Clavularia koellikeri. Chem Pharm Bull 32(4):1667–1670

    Article  CAS  Google Scholar 

  • Kolesnikova SA, Lyakhova EG, Kalinovsky AI, Dmitrenok PS, Dyshlovoy SA (2009) Diterpenoid hydroperoxides from the far-eastern brown alga Dictyota dichotoma. Aust J Chem 62:1185–1188

    Article  CAS  Google Scholar 

  • Ktari L, Guyot M (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L.) Thivy. J Appl Phycol 11:511. https://doi.org/10.1023/A:1008162624027

    Article  CAS  Google Scholar 

  • Kuklev DV, Domb AJ, Dembitsky VM (2013) Bioactive acetylenic metabolites. Phytomedicine 20(13):1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Kumar SS, Jayendra K (2012) Cytotoxity of marine algal steroids in HeLa cells - 2D & 3D QSAR approach. Int J Pharm Bio Sci 3:204–212

    CAS  Google Scholar 

  • Lagunin AA, Goel RK, Gawande DY, Priynka P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV (2014) Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 31(11):1585–1611

    Article  CAS  PubMed  Google Scholar 

  • Lai DW, Liu D, Deng ZW, van Ofwegen L, Proksch P, Lin WH (2012) Antifouling eunicellin-type diterpenoids from the gorgonian Astrogorgia sp. J Nat Prod 75:1595–1602

    Article  CAS  PubMed  Google Scholar 

  • Lei H (2016) Diterpenoids of gorgonian corals: chemistry and bioactivity. Chem Biodivers 13:345–365

    Article  CAS  PubMed  Google Scholar 

  • Li P-J, Wu Y-C, Chang F-R, Sheu J-H (2009) Studies on the secondary metabolites from the formosan soft corals Sinularia scabra and Lemnalia flava and the chemical modifications of lobohedleolide. http://www.ifremer.fr/avano

  • Li XL, He WF, Li J, Lan LF, Li XW, Guo YW (2015) New laurane-type sesquiterpenoids from the Chinese red alga Laurencia okamurai Yamada. J Asian Nat Prod Res 17(12):1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Lu Y, Su JH, Wen ZH, Dai CF, Kuo YH, Sheu JH (2011) Bioactive cembranoids from the dongsha atoll soft coral Sarcophyton crassocaule. Mar Drugs 9(6):994–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WY, Lu Y, Chen BW, Huang CY, Su JH, Wen ZH, Dai CF, Kuo YH, Sheu JH (2012) Sarcocrassocolides M-O, bioactive cembranoids from the Dongsha atoll soft coral Sarcophyton crassocaule. Mar Drugs 10(3):617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DZ, Liu JK (2013) Peroxy natural products. Nat Prod Bioprospect 3:161–206

    Article  CAS  PubMed Central  Google Scholar 

  • Lo J-M, Wang W-L, Chiang Y-M, Chen C-M (2001) Ceramides from the Taiwan red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Chinese Chem Soc 48:821–826

    Article  CAS  Google Scholar 

  • Miyashita K, Mikamia N, Hosokawa M (2013) Chemical and nutritional characteristics of brown seaweed lipids: a review. J Funct Food 5:1507–1517

    Article  CAS  Google Scholar 

  • Moghadam MH, Firouzi J, Saeidnia S, Hajimehdipoor H, Jamili S, Rustaiyan A, Gohari AR (2013) A cytotoxic hydroperoxy sterol from the brown alga, Nizamuddinia zanardinii. Daru 21(1):24. https://doi.org/10.1186/2008-2231-21-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita M, Ohno O, Suenaga K (2012a) Biselyngbyolide A, a novel cytotoxic macrolide from the marine cyanobacterium Lyngbya sp. Chem Lett 41:165–167

    Article  CAS  Google Scholar 

  • Morita M, Ohno O, Teruya T, Yamori T, Inuzuka T (2012b) Isolation and structures of biselyngbyasides B, C, and D from the marine cyanobacterium Lyngbya sp., and the biological activities of biselyngbyasides. Tetrahedron 68:5984–5990

    Article  CAS  Google Scholar 

  • Nowicka B, Kruk J (2012) Plastoquinol is more active than α−tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochim Biophys Acta 1817:389–394

    Article  CAS  PubMed  Google Scholar 

  • Ospina CA, Rodríguez AD, Ortega-Barria E, Capson TL (2003) Briarellins J−P and polyanthellin A: new eunicellin-based diterpenes from the gorgonian coral Briareum polyanthes and their antimalarial activity. J Nat Prod 66:357–363

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Neto JM (2014) Marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10(9):1920–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Permeh P, Saeidnia S, Mashinchian-Moradi A, Gohari AR (2012) Sterols from Sargassum oligocystum, a brown algae from the Persian Gulf, and their bioactivity. Nat Prod Res 26(8):774–777

    Article  CAS  PubMed  Google Scholar 

  • Phan C-S, Kamada T, Ishii T, Hamada T, Vairappan CS (2017) 12-Epi-9-deacetoxyxenicin, new cytotoxic diterpenoid from a Bornean soft coral, Xenia sp. Nat Prod Res. https://doi.org/10.1080/14786419.2017.1410812

  • Qi SH, Zhang S, Huang JS, Xiao ZH, Wu J (2004) Glycerol derivatives and sterols from Sargassum parvivesiculosum. Chem Pharm Bull (Tokyo) 52:986–988

    Article  CAS  Google Scholar 

  • Qin JJ, Jin HZ, Zhu JX, Fu JJ, Hu XJ (2010) Japonicones E-L, dimeric sesquiterpene lactones from Inula japonica Thunb. Planta Med 76:278–283

    Article  CAS  PubMed  Google Scholar 

  • Rahelivao MP, Gruner M, Lübken T, Islamov D, Kataeva O, Andriamanantoanina H, Bauer I, Knölker HJ (2016) Chemical constituents of the soft corals Sinularia vanderlandi and Sinularia gravis from the coast of Madagascar. Org Biomol Chem 14:989–1001

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez AD, Cóbar OM (1995) The briarellins, new eunicellin-based diterpenoids from a Caribbean gorgonian, Briareum asbestinum. Tetrahedron 51:6869–6880

    Article  Google Scholar 

  • Roy PK, Ashimine R, Miyazato H, Taira J, Ueda K (2016) Endoperoxy and hydroperoxy cadinane-type sesquiterpenoids from an Okinawan soft coral, Sinularia sp. Archiv Pharm Res 39(6):778–784

    Article  CAS  Google Scholar 

  • Sabry OM, Andrews S, McPhail KL, Goeger DE, Yokochi A (2005) Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. J Nat Prod 68:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Savidov N, Gloriozova TA, Dembitsky VM (2018) Pharmacological activities of sulphated steroids derived from marine sources. Life Sci Press 2(1):48–58. https://doi.org/10.28964/LifesciPress-2-107

    Article  Google Scholar 

  • Shanab SMM, Hafez RM, Fouad AS (2018) A review on algae and plants as potential source of arachidonic acid. J Adv Res 11:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheu JH, Liaw C-C, Duh C-Y (1995) Oxygenated clerosterols isolated from the marine alga Codium arabicum. J Nat Prod 58:1521–1526

    Article  CAS  Google Scholar 

  • Sheu J, Wang G, Sung P, Chiu Y, Duh C (1997) Cytotoxic sterols from the formosan brown algae Turbinaria ornata. Planta Med 63:571–572

    Article  CAS  PubMed  Google Scholar 

  • Shi YP, Rodríguez AD, Barnes CL, Sánchez JA, Raptis RG, Baran P (2002) New terpenoid constituents from Eunicea pinta. J Nat Prod 65:1232–1241

    Article  CAS  PubMed  Google Scholar 

  • Shi Z-Z, Miao F-P, Fang S-T, Liu X-H, Yin X-L, Ji N-Y (2017) Sesteralterin and tricycloalterfurenes A–D: terpenes with rarely occurring frameworks from the marine-alga-epiphytic fungus Alternaria alternata k21-1. J Nat Prod 80(9):2524–2529

    Article  CAS  PubMed  Google Scholar 

  • Siddiq A, Dembitsky V (2008) Acetylenic anticancer agents. Anti Cancer Agents Med Chem 8(2):132–170

    Article  CAS  Google Scholar 

  • Stengel DB, Connan S (2015) Natural products from marine algae: methods and protocols. Humana Press, Switzerland

    Book  Google Scholar 

  • Su JH, Ahmed AF, Sung PJ, Chao CH, Kuo YH, Sheu JH (2006) Manaarenolides A-I, diterpenoids from the soft coral Sinularia manaarensis. J Nat Prod 69(8):1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Su Y-D, Su J-H, Hwang T-L, Wen Z-H, Sheu J-H, Wu Y-C, Sung P-J (2017) Briarane diterpenoids isolated from octocorals between 2014 and 2016. Mar Drugs 15(2):44. https://doi.org/10.3390/md15020044

    Article  CAS  PubMed Central  Google Scholar 

  • Sung P-J, Sheu J-H, Xu J-P (2002) Survey of briarane-type diterpenoids of marine origin. Heterocycles 57:535–579

    Article  CAS  Google Scholar 

  • Sung P-J, Lin M-R, Chiang MY, Huang I-C, Syu S-M, Fang L-F, Wang W-H, Sheu J-H (2010) Briarenolide D, a new hydroperoxybriarane diterpenoid from a cultured octocoral Briareum sp. Chem Lett 39(10):1030–1032

    Article  CAS  Google Scholar 

  • Tang HF, Yi YH, Yao XS, Xu QZ, Zhang SY, Lin HW (2002) Bioactive steroids from the brown alga Sargassum carpophyllum. J Asian Nat Prod Res 4(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Tchokouaha Yamthe LR, Appiah-Opong R, Tsouh Fokou PV, Tsabang N, Fekam Boyom F, Nyarko AK, Wilson MD (2017) Marine algae as source of novel anti-leishmanial drugs: a review. Mar Drugs 15:323–331

    Article  CAS  PubMed Central  Google Scholar 

  • Teasdale ME, Shearer TL, Engel S, Alexander TS, Fairchild CR (2012) Bromophycoic acids: bioactive natural products from a Fijian red alga Callophycus sp. J Org Chem 77:8000–8006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira VL, Barbosa JP, Rocha FD, Kaplan MAC, Houghton PJ (2006) Hydroperoxysterols from Dictyopteris justii and Spatoglossum schroederi. Nat Prod Commun 4:293–297

    Google Scholar 

  • Terent’ev AO, Platonov MM, Levitsky DO, Dembitsky VM (2011) Organosilicon and organogermanium peroxides: synthesis and reactions. Russian Chem Rev 80:807–828

    Article  CAS  Google Scholar 

  • Terent’ev AO, Borisov DA, Vil VA, Dembitsky VM (2014) Synthesis of five- and six-membered cyclic organic peroxides: key transformations into peroxide ring-retaining products. Beilstein J Org Chem 10:34–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropina VI, Krivykh OV, Sadchikova NP, Terent’ev AO, Krylov IB (2010) Synthesis and antimicrobial activity of geminal bis-hydroperoxides. Pharm Chem J 44:248–250

    Article  CAS  Google Scholar 

  • Tseng Y-J, Shen K-P, Lin H-L, Huang C-Y, Dai C-F, Sheu J-H (2012) Lochmolins A–G, new sesquiterpenoids from the soft coral Sinularia lochmodes. Mar Drugs 10(7):1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaskovsky VE, Khotimchenko SV, Xia B, Hefang L (1996) Polar lipids and fatty acids of some marine macrophytes from the Yellow Sea. Phytochemistry 42:1347–1356

    Article  CAS  Google Scholar 

  • Vijayraghavan MR (1997) Brown algae. APH Publishing Corp, p 324

  • Vil VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO (2017) Peroxides with anthelmintic, antiprotozoal, fungicidal and antiviral bioactivity: properties, synthesis and reactions. Molecules 22(11):1881. https://doi.org/10.3390/molecules22111881

    Article  CAS  PubMed Central  Google Scholar 

  • Vil VA, Gloriozova TA, Poroikov VV, Terent’ev AO, Savidov N, Dembitsky VM (2018a) Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol 102(18):7657–7667

    Article  CAS  PubMed  Google Scholar 

  • Vil VA, dos Gomes GP, Ekimova MV, Lyssenko KA, Syroeshkin MA, Nikishin GI, Alabugin IV, Terent’ev AO (2018b) Five roads that converge at the cyclic peroxy-criegee intermediates: BF3-catalyzed synthesis of β-hydroperoxy-β-peroxylactones. J Org Chem 83(21):13427–13445

    Article  CAS  PubMed  Google Scholar 

  • Wang SK, Huang MJ, Duh CY (2006) Cytotoxic constituents from the formosan soft coral Clavularia inflata var. luzoniana. J Nat Prod 69:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Fang Y, Zhu T, Zhang M, Lin A, Gu Q, Zhu W (2008a) Seven new prenylated indole diketopiperazine alkaloids from holothurian-derived fungus Aspergillus fumigatus. Tetrahedron 64:7986–7991

    Article  CAS  Google Scholar 

  • Wang W, Li H, Wang Y, Xia X, Okada Y (2008b) Chemical constituents from brown alga Sargassum fusiforme. Zhongcaoyao 39:657–661

    CAS  Google Scholar 

  • Wang P, Tang H, Liu B-S, Li T-J, Sun P, Zhu W, Luo Y-P, Zhang W (2013) Tumor cell growth inhibitory activity and structure–activity relationship of polyoxygenated steroids from the gorgonian Menella kanisa. Steroids 78:951–958

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Rodríguez AD, Baran P, Raptis RG (2010) Dolabellane-type diterpenoids with antiprotozoan activity from a southwestern Caribbean gorgonian octocoral of the genus Eunicea. J Nat Prod 73:925–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982

    Article  CAS  PubMed  Google Scholar 

  • Xiang W, Chang LC (2006) Calyculatine: a new dolabellane diterpenoid from the marine sponge Eunicea calyculata. Planta Med 72(8):735-739

  • Xiang W, Leng CC (2006) Calyclulatine: a new dolabellane diterpenoid from the marine sponge Eunicea calyculata. Planta Med 72:735–739

    Article  CAS  PubMed  Google Scholar 

  • Yagi K (1994) Lipid peroxides and related radicals in clinical medicine. In: Armstrong D (ed) Free radicals in diagnostic medicine. Advances in experimental medicine and biology, vol 366. Springer, Boston

    Google Scholar 

  • Yamada Y (2002) Studies on discovery and synthesis of bioactive marine organic molecules. Yakugaku Zasshi 122(10):727–743

    Article  CAS  PubMed  Google Scholar 

  • Yang X-X, Su Y-Z, C-Er J, Cai P-M, Jia H-R (2018) A new dimeric sesquiterpene and other related derivatives from the marine red alga Laurencia okamurai. Biochem Syst Ecol 79:57–59

    Article  CAS  Google Scholar 

  • Yao G, Vidor NB, Foss AP, Chang LC (2007) Lemnalosides A-D, decalin-type bicyclic diterpene glycosides from the marine soft coral Lemnalia sp. J Nat Prod 70(6):901–905

    Article  CAS  PubMed  Google Scholar 

  • Yin SW, Shi YP, Li XM, Wang BG (2006) A new cembranoid diterpene and other related metabolites from the South China Sea soft coral Lobophytum crassum. Helv Chim Acta 89:567–569

    Article  CAS  Google Scholar 

  • Yu XQ, He WF, Liu DQ, Feng MT, Fang Y (2014) A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 103:162–170

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zheng GW, Niu XM, Li WQ, Wang FS, Li SH (2009) Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J Agric Food Chem 57:478–482

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Yin J, Jiang W, Ma M, Lei X, Xiang Z, Dong J, Huang K, Yan P (2013) Cytotoxic and antibacterial cembranoids from a South China Sea soft coral, Lobophytum sp. Mar Drugs 11:1162–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JX, Qin JJ, Jin HZ, Zhang WD (2013) Japonicones Q-T, four new dimeric sesquiterpene lactones from Inula japonica Thunb. Fitoterapia 84:40–46

    Article  CAS  PubMed  Google Scholar 

  • Zubía E, Ortega MJ, Carballo JL (2008a) Sesquiterpenes from the sponge Axinyssa isabela. J Nat Prod 71:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Zubía E, Ortega MJ, Hernández-Guerrero CJ, Carballo JL (2008b) Isothiocyanate sesquiterpenes from a sponge of the genus Axinyssa. J Nat Prod 71:608–614

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was performed in the framework of the Program for Basic Research of Russian State Academies of Sciences for 2013-2020 (RFBR; V.V., student grant № 18-33-00651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vil, V.A., Gloriozova, T.A., Terent’ev, A.O. et al. Hydroperoxides derived from marine sources: origin and biological activities. Appl Microbiol Biotechnol 103, 1627–1642 (2019). https://doi.org/10.1007/s00253-018-9560-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9560-x

Keywords

Navigation