Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens

Abstract

Overuse of broad-spectrum antibiotics to control human and plant pathogens greatly accelerated the development of antibiotic resistance among bacteria and fungi. Therefore, usage of new approaches is necessary to control outbreaks of phytopathogenic diseases as well as multidrug-resistant human pathogens. Many of the polyketides (PKs) and lipopetides (LPs) produced by Bacillus and Paenibacillus species have been described as antimicrobial agents that can be potentially applied as sustainable bio-organic products in medicine against human pathogens and in agriculture for controlling plant pathogens. The present review provides a general information about the classification and biochemical structure of known Bacillus- and Paenibacillus-secreted PKs, as well as ribosomally and nonribosomally synthesized peptides, their functional features, gene clusters involved in their production, and the mode of action of these metabolites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abriouel H, Franz CM, Ben Omar N, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x

    CAS  PubMed  Article  Google Scholar 

  2. Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ (2018) The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 42(6):805–828. https://doi.org/10.1093/femsre/fuy033

    CAS  PubMed  Article  Google Scholar 

  3. Ahern M, Verschueren S, van Sinderen D (2003) Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220(1):127–131

    CAS  PubMed  Article  Google Scholar 

  4. Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 13:192–203. https://doi.org/10.1016/j.csbj.2015.03.003

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Alkhalili RN, Canback B (2018) Identification of putative novel class-I Lanthipeptides in firmicutes: a combinatorial in silico analysis approach performed on genome sequenced bacteria and a close inspection of Z-geobacillin lanthipeptide biosynthesis gene cluster of the thermophilic Geobacillus sp. strain ZGt-1. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092650

  6. Arguelles Arias A, Ongena M, Devreese B, Terrak M, Joris B, Fickers P (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One 8(12):e83037. https://doi.org/10.1371/journal.pone.0083037

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:63. https://doi.org/10.1186/1475-2859-8-63

    CAS  Article  Google Scholar 

  8. Arias AA, Joris B, Fickers P (2014) Dual mode of action of amylolysin: a type-B lantibiotic produced by Bacillus amyloliquefaciens GA1. Protein Pept Lett 21(4):336–340. https://doi.org/10.2174/09298665113206660102

    CAS  Article  Google Scholar 

  9. Ash C, Farrow J, Wallbanks S, Collins M (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13(4):202–206

    CAS  Article  Google Scholar 

  10. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64(3):253–260. https://doi.org/10.1007/bf00873085

    CAS  PubMed  Article  Google Scholar 

  11. Awais M, Shah AA, Hameed A, Hasan F (2007) Isolation, identification and optimization of bacitracin produced by Bacillus sp. Pak J Bot 39(4):1303

    Google Scholar 

  12. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98(3):585–603

    CAS  PubMed  Article  Google Scholar 

  13. Baindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, Franco OL, Patil PB, Korpole S (2016) Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob Agents Chemother 60(1):580–591. https://doi.org/10.1128/aac.01813-15

    CAS  PubMed  Article  Google Scholar 

  14. Barbosa J, Caetano T, Mendo S (2015) Class I and class II lanthipeptides produced by Bacillus spp. J Nat Prod 78(11):2850–2866. https://doi.org/10.1021/np500424y

    CAS  PubMed  Article  Google Scholar 

  15. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48(2):159–169

    CAS  PubMed  Article  Google Scholar 

  16. Bechet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclere V, Dubois T, Lereclus D, Pupin M, Jacques P (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 95(3):593–600. https://doi.org/10.1007/s00253-012-4181-2

    CAS  PubMed  Article  Google Scholar 

  17. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75(17):5451–5460. https://doi.org/10.1128/aem.00730-09

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M, Venturi V, Fira D (2012) Antimicrobial activity of Bacillus sp natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol Biotechnol 50(1):25–31

    CAS  Google Scholar 

  19. Besson F, Peypoux F, Michel G (1978) Action of mycosubtilin and of bacillomycin L on Micrococcus luteus cells and protoplasts: influence of the polarity of the antibiotics upon their action on the bacterial cytoplasmic membrane. FEBS Lett 90(1):36–40

    CAS  PubMed  Article  Google Scholar 

  20. Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42(1):154–160

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, Walsh CT, Clardy J (2007) The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc Natl Acad Sci U S A 104(5):1506–1509. https://doi.org/10.1073/pnas.0610503104

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. Pesticides in the modern world—pesticides use and management. InTech, Rijeka, pp 273–302

    Google Scholar 

  23. Chehimi S, Delalande F, Sable S, Hajlaoui MR, Van Dorsselaer A, Limam F, Pons AM (2007) Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can J Microbiol 53(2):284–290. https://doi.org/10.1139/w06-116

    CAS  PubMed  Article  Google Scholar 

  24. Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188(11):4024–4036. https://doi.org/10.1128/jb.00052-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47(3):180–186. https://doi.org/10.1111/j.1472-765X.2008.02412.x

    CAS  PubMed  Article  Google Scholar 

  26. Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, Borriss R (2009) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140(1–2):38–44. https://doi.org/10.1016/j.jbiotec.2008.10.015

    CAS  PubMed  Article  Google Scholar 

  27. Chmara H (1985) Inhibition of glucosamine synthase by bacilysin and anticapsin. J Gen Microbiol 131(2):265–271. https://doi.org/10.1099/00221287-131-2-265

    CAS  PubMed  Article  Google Scholar 

  28. Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191(10):3350–3358. https://doi.org/10.1128/jb.01728-08

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36(1):4–31. https://doi.org/10.1002/med.21321

    CAS  PubMed  Article  Google Scholar 

  30. Cochrane SA, Lohans CT, van Belkum MJ, Bels MA, Vederas JC (2015a) Studies on tridecaptin B(1), a lipopeptide with activity against multidrug resistant Gram-negative bacteria. Org Biomol Chem 13(21):6073–6081. https://doi.org/10.1039/c5ob00780a

    CAS  PubMed  Article  Google Scholar 

  31. Cochrane SA, Surgenor RR, Khey KM, Vederas JC (2015b) Total synthesis and stereochemical assignment of the antimicrobial lipopeptide cerexin A1. Org Lett 17(21):5428–5431. https://doi.org/10.1021/acs.orglett.5b02779

    CAS  PubMed  Article  Google Scholar 

  32. Cochrane SA, Findlay B, Bakhtiary A, Acedo JZ, Rodriguez-Lopez EM, Mercier P, Vederas JC (2016) Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc Natl Acad Sci U S A 113(41):11561–11566. https://doi.org/10.1073/pnas.1608623113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105. https://doi.org/10.1038/nrmicro2937

    CAS  PubMed  Article  Google Scholar 

  34. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94(7):2667–2679. https://doi.org/10.1529/biophysj.107.114090

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Ding R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, Zhao YH (2011) Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol 49(6):942–949. https://doi.org/10.1007/s12275-011-1153-7

    CAS  PubMed  Article  Google Scholar 

  36. Dischinger J, Josten M, Szekat C, Sahl HG, Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4(8):e6788. https://doi.org/10.1371/journal.pone.0006788

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359. https://doi.org/10.1146/annurev.phyto.43.032904.092924

    CAS  PubMed  Article  Google Scholar 

  38. Garcia-Gonzalez E, Muller S, Ensle P, Sussmuth RD, Genersch E (2014a) Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol 16(5):1297–1309

    CAS  PubMed  Article  Google Scholar 

  39. Garcia-Gonzalez E, Muller S, Hertlein G, Heid N, Sussmuth RD, Genersch E (2014b) Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiologyopen 3(5):642–656. https://doi.org/10.1002/mbo3.195

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15(1):203. https://doi.org/10.1186/s12934-016-0603-7

    Article  Google Scholar 

  41. Gray EJ, Di Falco M, Souleimanov A, Smith DL (2006a) Proteomic analysis of the bacteriocin thuricin 17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol Lett 255(1):27–32. https://doi.org/10.1111/j.1574-6968.2005.00054.x

    CAS  PubMed  Article  Google Scholar 

  42. Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006b) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100(3):545–554. https://doi.org/10.1111/j.1365-2672.2006.02822.x

    CAS  PubMed  Article  Google Scholar 

  43. Guo Y, Huang E, Yuan C, Zhang L, Yousef AE (2012) Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl Environ Microbiol 78(9):3156–3165. https://doi.org/10.1128/AEM.07782-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Gustafson K, Roman M, Fenical W (1989) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111(19):7519–7524

    CAS  Article  Google Scholar 

  45. He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73(1):168–178. https://doi.org/10.1128/aem.02023-06

    CAS  PubMed  Article  Google Scholar 

  46. He Z, Yuan C, Zhang L, Yousef AE (2008) N-terminal acetylation in paenibacillin, a novel lantibiotic. FEBS Lett 582(18):2787–2792. https://doi.org/10.1016/j.febslet.2008.07.008

    CAS  PubMed  Article  Google Scholar 

  47. Helfrich EJ, Piel J (2016) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 33(2):231–316. https://doi.org/10.1039/c5np00125k

    CAS  PubMed  Article  Google Scholar 

  48. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Eng 48(26):4688–4716. https://doi.org/10.1002/anie.200806121

    CAS  Article  Google Scholar 

  49. Hinchliffe P, Yang QE, Portal E, Young T, Li H, Tooke CL, Carvalho MJ, Paterson NG, Brem J, Niumsup PR, Tansawai U, Lei L, Li M, Shen Z, Wang Y, Schofield CJ, Mulholland AJ, Shen J, Fey N, Walsh TR, Spencer J (2017) Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR-1. Sci Rep 7:39392. https://doi.org/10.1038/srep39392

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Holland IB, Roberts CF (1964) Some properties of a new bacteriocin formed by Bacillus megaterium. J Gen Microbiol 35:271–285. https://doi.org/10.1099/00221287-35-2-271

    CAS  PubMed  Article  Google Scholar 

  51. Huang E, Yousef AE (2012) Draft genome sequence of Paenibacillus polymyxa OSY-DF, which coproduces a lantibiotic, paenibacillin, and polymyxin E1. J Bacteriol 194(17):4739–4740

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Huang E, Yousef AE (2014) The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl Environ Microbiol 80(9):2700–2704. https://doi.org/10.1128/AEM.03775-13

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Huang E, Yousef AE (2015) Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol Res 181:15–21. https://doi.org/10.1016/j.micres.2015.08.001

    CAS  PubMed  Article  Google Scholar 

  54. Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191(18):5690–5696. https://doi.org/10.1128/jb.00541-09

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Huang E, Guo Y, Yousef AE (2014) Biosynthesis of the new broad-spectrum lipopeptide antibiotic paenibacterin in Paenibacillus thiaminolyticus OSY-SE. Res Microbiol 165(3):243–251. https://doi.org/10.1016/j.resmic.2014.02.002

    CAS  PubMed  Article  Google Scholar 

  56. Hyronimus B, Le Marrec C, Urdaci MC (1998) Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol 85(1):42–50

    CAS  PubMed  Article  Google Scholar 

  57. Jung M, Lee S, Kim H (2000) Recent studies on natural products as anti-HIV agents. Curr Med Chem 7(6):649–661

    CAS  PubMed  Article  Google Scholar 

  58. Kalyon B, Helaly SE, Scholz R, Nachtigall J, Vater J, Borriss R, Sussmuth RD (2011) Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett 13(12):2996–2999. https://doi.org/10.1021/ol200809m

    CAS  PubMed  Article  Google Scholar 

  59. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98(4):881–888. https://doi.org/10.1111/j.1365-2672.2004.02513.x

    CAS  PubMed  Article  Google Scholar 

  60. Kato T, Shoji J (1976) The amino acid sequence of octapeptin C1 (333-25) studies on antibiotics from the genus Bacillus. XIX. J Antibiot (Tokyo) 29(12):1339–1340

    CAS  Article  Google Scholar 

  61. Kato T, Sakazaki R, Hinoo H, Shoji J (1979) The structures of tridecaptins B and C (studies on antibiotics from the genus Bacillus. XXV). J Antibiot (Tokyo) 32(4):305–312

    CAS  Article  Google Scholar 

  62. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry 43(12):3385–3395. https://doi.org/10.1021/bi0359527

    CAS  PubMed  Article  Google Scholar 

  63. Kenig M, Abraham EP (1976) Antimicrobial activities and antagonists of bacilysin and anticapsin. J Gen Microbiol 94(1):37–45. https://doi.org/10.1099/00221287-94-1-37

    CAS  PubMed  Article  Google Scholar 

  64. Kiss A, Baliko G, Csorba A, Chuluunbaatar T, Medzihradszky KF, Alfoldi L (2008) Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. J Bacteriol 190(19):6448–6457. https://doi.org/10.1128/jb.00557-08

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266. https://doi.org/10.1094/phyto.2004.94.11.1259

    CAS  PubMed  Article  Google Scholar 

  66. Konz D, Klens A, Schorgendorfer K, Marahiel MA (1997) The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4, 927(12):–937. https://doi.org/10.1016/S1074-5521(97)90301-X

  67. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Lawton EM, Ross RP, Hill C, Cotter PD (2007) Two-peptide lantibiotics: a medical perspective. Mini-Rev Med Chem 7(12):1236–1247

    CAS  PubMed  Article  Google Scholar 

  69. Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol 66(12):5213–5220

    PubMed  PubMed Central  Article  Google Scholar 

  70. Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71(8):4577–4584. https://doi.org/10.1128/aem.71.8.4577-4584.2005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Lee H, Churey JJ, Worobo RW (2009a) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299(2):205–213. https://doi.org/10.1111/j.1574-6968.2009.01749.x

    CAS  PubMed  Article  Google Scholar 

  72. Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SR, Ly A, Souleimanov A, Zhou X, Smith DL (2009b) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229(4):747–755. https://doi.org/10.1007/s00425-008-0870-6

    CAS  PubMed  Article  Google Scholar 

  73. Lee SH, Cho YE, Park SH, Balaraju K, Park JW, Lee SW, Park K (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41(1):49–58. https://doi.org/10.1007/s12600-012-0263-z

    CAS  Article  Google Scholar 

  74. Li W, Tang XX, Yan X, Wu Z, Yi ZW, Fang MJ, Su X, Qiu YK (2016) A new macrolactin antibiotic from deep sea-derived bacteria Bacillus subtilis B5. Nat Prod Res 30:2777–2782. https://doi.org/10.1080/14786419.2016.1155576

    CAS  PubMed  Article  Google Scholar 

  75. Li YX, Zhong Z, Hou P, Zhang WP, Qian PY (2018a) Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. Nat Chem Biol 14(4):381–387. https://doi.org/10.1038/s41589-018-0009-4

    CAS  PubMed  Article  Google Scholar 

  76. Li YX, Zhong Z, Zhang WP, Qian PY (2018b) Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat Commun 9. https://doi.org/10.1038/s41467-018-05781-6

  77. Liu R-F, Zhang D-J, Li Y-G, Tao L-M, Tian L (2010) A new antifungal cyclic lipopeptide from Bacillus marinus B-9987. Helv Chim Acta 93(12):2419–2425. https://doi.org/10.1002/hlca.201000094

    CAS  Article  Google Scholar 

  78. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. https://doi.org/10.1016/s1473-3099(15)00424-7

    PubMed  Article  Google Scholar 

  79. Lohans CT, Huang Z, van Belkum MJ, Giroud M, Sit CS, Steels EM, Zheng J, Whittal RM, McMullen LM, Vederas JC (2012) Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J Am Chem Soc 134(48):19540–19543. https://doi.org/10.1021/ja3089229

    CAS  PubMed  Article  Google Scholar 

  80. Lohans CT, van Belkum MJ, Cochrane SA, Huang Z, Sit CS, McMullen LM, Vederas JC (2014) Biochemical, structural, and genetic characterization of tridecaptin A(1), an antagonist of Campylobacter jejuni. Chembiochem 15(2):243–249. https://doi.org/10.1002/cbic.201300595

    CAS  PubMed  Article  Google Scholar 

  81. Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81(19):6601–6609. https://doi.org/10.1128/aem.01639-15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65(6):317–322 http://www.nature.com/ja/journal/v65/n6/suppinfo/ja201219s1.html

    CAS  PubMed  Article  Google Scholar 

  83. Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74(12):1047–1051

    CAS  PubMed  Article  Google Scholar 

  84. Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278(15):13124–13132. https://doi.org/10.1074/jbc.M212364200

    CAS  PubMed  Article  Google Scholar 

  85. Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20(6):501–506

    CAS  PubMed  Article  Google Scholar 

  86. McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A 103(46):17243–17248. https://doi.org/10.1073/pnas.0606088103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Meyers E, Parker WL, Brown WE (1976) A nomenclature proposal for the octapeptin antibiotics. J Antibiot (Tokyo) 29(11):1241–1242

    CAS  Article  Google Scholar 

  88. Muller S, Garcia-Gonzalez E, Mainz A, Hertlein G, Heid NC, Mosker E, van den Elst H, Overkleeft HS, Genersch E, Sussmuth RD (2014) Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angew Chem Int Ed Eng 53(40):10821–10825. https://doi.org/10.1002/anie.201404572

    CAS  Article  Google Scholar 

  89. Nihorimbere V, Ongena C, Cawoy H, Brostaux Y, Kakana P, Jourdan E, Thonart P (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local Fusarium disease and growth promotion. Afr J Microbiol Res 4(11):1135–1142

    Google Scholar 

  90. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 13:137. https://doi.org/10.1186/1471-2180-13-137

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. O'Hagan D (1992) Biosynthesis of polyketide metabolites. Nat Prod Rep 9(5):447–479

    CAS  PubMed  Article  Google Scholar 

  92. Oman TJ, van der Donk WA (2009) Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem Biol 4(10):865–874. https://doi.org/10.1021/cb900194x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125. https://doi.org/10.1016/j.tim.2007.12.009

    CAS  PubMed  Article  Google Scholar 

  94. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

    CAS  PubMed  Article  Google Scholar 

  95. Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J (2001) Isolation and structural characterization of polymyxin B components. J Chromatogr A 912(2):369–373

    CAS  PubMed  Article  Google Scholar 

  96. Oscariz JC, Pisabarro AG (2000) Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol 89(2):361–369

    CAS  PubMed  Article  Google Scholar 

  97. Oscariz JC, Lasa I, Pisabarro AG (1999) Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett 178(2):337–341

    CAS  PubMed  Article  Google Scholar 

  98. Oscariz JC, Cintas L, Holo H, Lasa I, Nes IF, Pisabarro AG (2006) Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol Lett 254(1):108–115. https://doi.org/10.1111/j.1574-6968.2005.00009.x

    CAS  PubMed  Article  Google Scholar 

  99. Patel H, Tscheka C, Edwards K, Karlsson G, Heerklotz H (2011) All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim Biophys Acta 1808(8):2000–2008. https://doi.org/10.1016/j.bbamem.2011.04.008

    CAS  PubMed  Article  Google Scholar 

  100. Pattnaik P, Kaushik JK, Grover S, Batish VK (2001) Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol 91(4):636–645

    CAS  PubMed  Article  Google Scholar 

  101. Pattnaik P, Grover S, Batish VK (2005) Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiol Res 160(2):213–218

    CAS  PubMed  Article  Google Scholar 

  102. Pichard B, Larue JP, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133(3):215–218

    CAS  PubMed  Article  Google Scholar 

  103. Pirri G, Giuliani A, Nicoletto SF, Pizzuto L, Rinaldi AC (2009) Lipopeptides as anti-infectives: a practical perspective. Cent Eur J Biol 4(3):258–273. https://doi.org/10.2478/s11535-009-0031-3

    CAS  Article  Google Scholar 

  104. Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Chen J, Zhao X (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31(11):1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003

    CAS  PubMed  Article  Google Scholar 

  105. Qian CD, Liu TZ, Zhou SL, Ding R, Zhao WP, Li O, Wu XC (2012a) Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol 12:197. https://doi.org/10.1186/1471-2180-12-197

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Qian CD, Wu XC, Teng Y, Zhao WP, Li O, Fang SG, Huang ZH, Gao HC (2012b) Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother 56(3):1458–1465. https://doi.org/10.1128/aac.05580-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Ramarathnam R, Bo S, Chen Y, Fernando WG, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53(7):901–911. https://doi.org/10.1139/w07-049

    CAS  PubMed  Article  Google Scholar 

  108. Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90(3):419–430

    CAS  Google Scholar 

  109. Raza W, Yang XM, Wu HS, Wang Y, Xu YC, Shen QR (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp nevium. Eur J Plant Pathol 125(3):471–483. https://doi.org/10.1007/s10658-009-9496-1

    CAS  Article  Google Scholar 

  110. Righi E, Giacomazzi CG, Bassetti M, Bisio F, Soro O, McDermott JL, Varnier OE, Ratto S, Viscoli C (2007) Soft-tissue infection with Absidia corymbifera and kidney complications in an AIDS patient. Med Mycol 45(7):637–640. https://doi.org/10.1080/13693780701435358

    CAS  PubMed  Article  Google Scholar 

  111. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4):430–440. https://doi.org/10.1094/mpmi-20-4-0430

    CAS  PubMed  Article  Google Scholar 

  112. Romero-Tabarez M, Jansen R, Sylla M, Lunsdorf H, Haussler S, Santosa DA, Timmis KN, Molinari G (2006) 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob Agents Chemother 50(5):1701–1709. https://doi.org/10.1128/AAC.50.5.1701-1709.2006

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Rybakova D, Wetzlinger U, Muller H, Berg G (2015) Complete genome sequence of Paenibacillus polymyxa strain Sb3-1, a soilborne bacterium with antagonistic activity toward plant pathogens. Genome Announc 3(2). https://doi.org/10.1128/genomeA.00052-15

  114. Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, Sussmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod 70(9):1417–1423. https://doi.org/10.1021/np070070k

    CAS  PubMed  Article  Google Scholar 

  115. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R (2014) Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196(10):1842–1852. https://doi.org/10.1128/jb.01474-14

    PubMed  PubMed Central  Article  Google Scholar 

  116. Sebei S, Zendo T, Boudabous A, Nakayama J, Sonomoto K (2007) Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J Appl Microbiol 103(5):1621–1631. https://doi.org/10.1111/j.1365-2672.2007.03395.x

    CAS  PubMed  Article  Google Scholar 

  117. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7(2):285–295

    CAS  PubMed  Article  Google Scholar 

  118. Shoji J, Kato T, Sakazaki R (1976) The total structure of cerexin A (studies on antibiotics from the genus Bacillus. XVI). J Antibiot (Tokyo) 29(12):1268–1274

    CAS  Article  Google Scholar 

  119. Shoji J, Kato T, Hinoo H (1977) The structures of two new polymyxin group antibiotics. J Antibiot (Tokyo) 30(5):427–429

    CAS  Article  Google Scholar 

  120. Singh AK, Ghodke I, Chhatpar HS (2009) Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manag 91(2):358–362. https://doi.org/10.1016/j.jenvman.2009.09.001

    CAS  Article  Google Scholar 

  121. Sogn JA (1976) Structure of the peptide antibiotic polypeptin. J Med Chem 19(10):1228–1231

    CAS  PubMed  Article  Google Scholar 

  122. Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, von der Ohe W, Steinert M, Daniel R, Muller R (2014) Paenilarvins: iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae. Chembiochem 15(13):1947–1955. https://doi.org/10.1002/cbic.201402139

    CAS  PubMed  Article  Google Scholar 

  123. Stansly PG, Shepherd RG, White HJ (1947) Polymyxin: a new chemotherapeutic agent. Bull Johns Hopkins Hosp 81(1):43–54

    CAS  PubMed  Google Scholar 

  124. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

    CAS  PubMed  Article  Google Scholar 

  125. Stein T, Dusterhus S, Stroh A, Entian KD (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70(4):2349–2353

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Stern NJ, Svetoch EA, Urakov NN, Eruslanov BV, Volodina LI, Kovalev YN, Kudryavtseva TY, Perelygin VV, Pokhilenko VD, Levchuk VP, Borzenkov VN (2013) Bacteriocins and novel bacterial strains. United States patent application US 13/533,037 

  127. Sumi CD, Yang BW, Yeo IC, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61(2):93–103. https://doi.org/10.1139/cjm-2014-0613

    CAS  PubMed  Article  Google Scholar 

  128. Sun J, Zhang H, Liu YH, Feng Y (2018) Towards understanding MCR-like colistin resistance. Trends Microbiol 26:794–808. https://doi.org/10.1016/j.tim.2018.02.006

    CAS  PubMed  Article  Google Scholar 

  129. Svetoch EA, Stern NJ, Eruslanov BV, Kovalev YN, Volodina LI, Perelygin VV, Mitsevich EV, Mitsevich IP, Pokhilenko VD, Borzenkov VN, Levchuk VP, Svetoch OE, Kudriavtseva TY (2005) Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. J Food Prot 68(1):11–17

    CAS  PubMed  Article  Google Scholar 

  130. Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85(5):1521–1531. https://doi.org/10.1007/s00253-009-2176-4

    CAS  PubMed  Article  Google Scholar 

  131. Teng Y, Zhao W, Qian C, Li O, Zhu L, Wu X (2012) Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol 12:45. https://doi.org/10.1186/1471-2180-12-45

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot (Tokyo) 39(6):737–744

    CAS  Article  Google Scholar 

  133. Vater J, Niu B, Dietel K, Borriss R (2015) Characterization of novel fusaricidins produced by Paenibacillus polymyxa-M1 using MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 26(9):1548–1558. https://doi.org/10.1007/s13361-015-1130-1

    CAS  PubMed  Article  Google Scholar 

  134. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure–activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916. https://doi.org/10.1021/jm900999h

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Velkov T, Gallardo-Godoy A, Swarbrick JD, Blaskovich MAT, Elliott AG, Han M, Thompson PE, Roberts KD, Huang JX, Becker B, Butler MS, Lash LH, Henriques ST, Nation RL, Sivanesan S, Sani MA, Separovic F, Mertens H, Bulach D, Seemann T, Owen J, Li J, Cooper MA (2018) Structure, function, and biosynthetic origin of octapeptin antibiotics active against extensively drug-resistant gram-negative bacteria. Cell Chem Biol 25(4):380–391 e5. https://doi.org/10.1016/j.chembiol.2018.01.005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Von Tersch MA, Carlton BC (1983) Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol 155(2):866–871

    Google Scholar 

  137. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303(5665):1805–1810. https://doi.org/10.1126/science.1094318

    CAS  PubMed  Article  Google Scholar 

  138. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501. https://doi.org/10.1146/annurev.micro.61.080706.093501

    CAS  PubMed  Article  Google Scholar 

  139. Wu XC, Shen XB, Ding R, Qian CD, Fang HH, Li O (2010) Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol Lett 310(1):32–38. https://doi.org/10.1111/j.1574-6968.2010.02040.x

    CAS  PubMed  Article  Google Scholar 

  140. Wu XC, Qian CD, Fang HH, Wen YP, Zhou JY, Zhan ZJ, Ding R, Li O, Gao H (2011) Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol 4(4):491–502. https://doi.org/10.1111/j.1751-7915.2010.00201.x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975. https://doi.org/10.1038/srep12975

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Yousef A. E, Yaoqi G, Huang En (2013) Biosynthesis of paenibacillin. World Intellectual Property Organization WO/2013/180699

  143. Yu WB, Ye BC (2016) High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis. J Basic Microbiol 56(5):502–509. https://doi.org/10.1002/jobm.201500291

    CAS  PubMed  Article  Google Scholar 

  144. Zarei I (2012) Biosynthesis of bacitracin in stirred fermenter by Bacillus licheniformis using defatted oil seed cakes as substrate. Mod Appl Sci 6(2):30

    CAS  Article  Google Scholar 

  145. Zhang B, Dong C, Shang Q, Han Y, Li P (2013) New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochim Biophys Acta 1828(9):2230–2237. https://doi.org/10.1016/j.bbamem.2013.05.033

    CAS  PubMed  Article  Google Scholar 

  146. Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182(11):3266–3273

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. Zimmerman SB, Schwartz CD, Monaghan RL, Pelak BA, Weissberger B, Gilfillan EC, Mochales S, Hernandez S, Currie SA, Tejera E, Stapley EO (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. J Antibiot (Tokyo) 40(12):1677–1681

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by grants from the Consortium de recherche et innovations en bioprocédés industriels au Québec (CRIBIQ) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Déziel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olishevska, S., Nickzad, A. & Déziel, E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 103, 1189–1215 (2019). https://doi.org/10.1007/s00253-018-9541-0

Download citation

Keywords

  • Lipopeptides
  • Lantibiotics
  • Bacteriocins