Skip to main content

Advertisement

Log in

Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During the last decades, biopolymers experienced a renaissance. The increasing limitation of fossil resources in combination with a public demand for environmental-friendly and sustainable processes has led to the formation of a market for biobased plastics. Especially non-biodegradable bioplastics are very interesting materials, as they combine the benefits of reduced carbon footprint during production and increased resource efficiency with the persistence to microbial degradation. Consequently, persistent biomass-derived plastic materials are highly promising to substitute conventional fossil-based plastics in applications, which require durability and longevity. Non-biodegradable bioplastics derived from renewable resources represent 57% of all bioplastics with partially biobased polyethylene terephthalate currently leading the market, followed by biobased polyamides and fully biomass-derived polyethylene. An exceptional biopolymer with thermoplastic properties was discovered only two decades ago, when—for the first time—polythioesters were synthesized by microbial fermentation. Though synthesized by bacteria, it turned out that polythioesters are non-biodegradable by microorganisms in contrast to all other biopolymers and thus, represent a novel non-biodegradable bioplastic material. This review gives an overview about the recent development and progress regarding bioplastics with special focus on persistent bioplastics. We describe the generation of the respective monomers from biomass-derived substrates and summarize the current status of production, which range from the laboratory-scale up to large-scale industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    CAS  Google Scholar 

  • Alexander M (1965) Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol 7:35–80

    CAS  PubMed  Google Scholar 

  • Allison EH, Bassett HR (2015) Climate change in the oceans: human impacts and responses. Science 350:778–782

    CAS  PubMed  Google Scholar 

  • Andreeßen C, Gerlt V, Steinbüchel A (2017) Conversion of cysteine to 3-mercaptopyruvic acid by bacterial aminotransferases. Enzym Microb Technol 99:38–48

    Google Scholar 

  • Andreeßen C, Wolf N, Cramer B, Humpf HU, Steinbüchel A (2018) In vitro biosynthesis of 3-mercaptolactate by lactate dehydrogenases. Enzym Microb Technol 108:1–10

    Google Scholar 

  • Anellotech, Inc. (2013) Simple, novel technology for producing “clean” petrochemicals and transportation fuels. http://www.anellotech.com/tech.html. Accessed 13 Jun 2018

  • Arkema (2018) Rilsan® Polyamide Family. https://www.arkema.com/en/products/product-finder/range-viewer/Rilsan-Polyamide-Family/. Accessed 30 Jan 2018

  • Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    CAS  PubMed  Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    CAS  PubMed  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875

    CAS  Google Scholar 

  • Barros S (2016) Brazil Biofuels Annual – Annual Report 2016. https://www.fas.usda.gov/data/brazil-biofuels-annual-1. Accessed 30 Jan 2018

  • Benner J, van Lieshout M, Croezen H (2012) Identifying breakthrough technologies for the production of basic chemicals - A long term view on the sustainable production of ammonia, olefins and aromatics in the European region. https://de.scribd.com/document/342182520/CE-Delft-Identifying-Breakthrough-Technologies-for-the-Production-of-Basic-Chemicals. Accessed 30 Jan 2018

  • Bioplastics magazine (2015) Coca-Cola Introduced World’s First 100% Biobased PET Bottle. http://www.bioplasticsmagazine.com/en/news/meldungen/20150604_Coca-Cola.php. Accessed 30 Jan 2018

  • Cañestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8:932–942

    PubMed  Google Scholar 

  • Cargill (2018) BiOH. https://www.cargill.com/bioindustrial/foams-flooring. Accessed 30 Jan 2018

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:8–20

    CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447

    Google Scholar 

  • Dubey S, Pandey A, Sangwan R (2016) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam

    Google Scholar 

  • DuPont Sorona® (2018) The Sorona® story. http://sorona.com/our-story/. Accessed 30 Jan 2018

  • E4tech, RE-CORD, WUR (2015) From the Sugar Platform to biofuels and biochemicals. Final report for the European Commission. http://www.greencarcongress.com/2015/05/20150508-e4tech.html. Accessed 30 Jan 2018

  • Elbanna K, Lütke-Eversloh T, Van Trappen S, Mergaert J, Swings J, Steinbüchel A (2003) Schlegelella thermodepolymerans gen. Nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate). Int J Syst Evol Microbiol 53:1165–1168

    CAS  PubMed  Google Scholar 

  • Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    CAS  PubMed  Google Scholar 

  • EMSGrivory (2018) Greenline. https://www.emsgrivory.com/de/produkte-und-maerkte/produkte/greenline/. Accessed 30 Jan 2018

  • Endres H-J, Siebert-Raths A (2011) Engineering biopolymers. Carl Hanser, München

    Google Scholar 

  • EPA (2018) Greenhouse Gas Emissions. https://www3.epa.gov/ghgemissions/. Accessed 13 Jun 2018

  • European Bioplastics (2016a) Bioplastics - Facts and figures. https://www.european-bioplastics.org/news/publications/. Accessed 30 Jan 2018

  • European Bioplastics (2016b) Partnership between BASF and Avantium to produce FDCA and PEF. http://www.european-bioplastics.org/new-products-and-innovations-may-2016/. Accessed 30 Jan 2018

  • European Bioplastics (2017) Bioplastics - Facts and figures. https://www.european-bioplastics.org/news/publications/. Accessed 13 Jun 2018

  • Evonik (2011) TEGOLON® ECO 10–10 the first fully vegetable-based Nylon-10,10. https://corporate.evonik.com/en/media/search/Pages/news-details.aspx?newsid=24139 Accessed 30 Jan 2018

  • Fasciotti M (2017) Perspectives for the use of biotechnology in green chemistry applied to biopolymers, fuels and organic synthesis: from concepts to a critical point of view. Sustain Chem Pharm 6:82–89

    Google Scholar 

  • Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441

    CAS  Google Scholar 

  • Fontanella S, Bonhomme S, Brusson JM, Pitteri S, Samuel G, Pichon G, Lacoste J, Fromageot D, Lemaire J, Delort AM (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or co. Polym Degrad Stab 98:875–884

    CAS  Google Scholar 

  • Gnansounou E, Dauriat A (2005) Ethanol fuel from biomass: a review. J Sci Ind Res (India) 64:809–821

    CAS  Google Scholar 

  • Grand view research (2017) Bio-based polypropylene (PP) market analysis and segment forecasts to 2025. https://www.grandviewresearch.com/industry-analysis/biobased-polypropylene. Accessed Jun 13, 2018

  • Gupta MN, Raghava S (2007) Relevance of chemistry to white biotechnology. Chem Cent J 1:1–3

    Google Scholar 

  • Harmsen P, Hackmann M, Bos H (2014) Green building blocks for bio-based plastics. Biofuels Bioprod Biorefin 8:306–324

    CAS  Google Scholar 

  • Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic water, Arabian Sea, India. Mar Pollut Bull 77:100–106

    CAS  PubMed  Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294

    CAS  Google Scholar 

  • Iwata S, Toshima K, Matsumura S (2003) Enzyme-catalyzed preparation of aliphatic polyesters containing thioester linkages. Macromol Rapid Commun 24:467–471

    CAS  Google Scholar 

  • Jambunathan P, Zhang K (2016) Engineered biosynthesis of biodegradable polymers. J Ind Microbiol Biotechnol 43:1037–1058

    CAS  PubMed  Google Scholar 

  • JEC Group (2013) Arkema launches the Rilsan® T, a new range of biosourced polyamides. http://www.jeccomposites.com/knowledge/international-composites-news/arkema-launches-rilsan-t-new-range-biosourced-polyamides. Accessed 30 Jan 2018

  • Jeon HJ, Kim MN (2016) Isolation of mesophilic bacterium for biodegradation of polypropylene. Int Biodeterior Biodegrad 115:244–249

    CAS  Google Scholar 

  • Kaczmarek H, OlŁdak D, Malanowski P, Chaberska H (2005) Effect of short wavelength UV-irradiation on ageing of polypropylene/ cellulose compositions. Polym Degrad Stab 88:189–198

    CAS  Google Scholar 

  • Kang A, Lee TS (2015) Converting sugars to biofuels: ethanol and beyond. Bioengineering 2:184–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Toshima K, Matsumura S (2005) Preparation of aliphatic poly(thioester) by the lipase-catalyzed direct polycondensation of 11-mercaptoundecanoic acid. Biomacromolecules 6:2275–2280

    CAS  PubMed  Google Scholar 

  • Kato M, Toshima K, Matsumura S (2006) Enzyme-catalyzed preparation of aliphatic polythioester by direct polycondensation of diacid diester and dithiol. Macromol Rapid Commun 27:605–610

    CAS  Google Scholar 

  • Kato M, Toshima K, Matsumura S (2007) Enzymatic synthesis of polythioester by the ring-opening polymerization of cyclic thloester. Biomacromolecules 8:3590–3596

    CAS  PubMed  Google Scholar 

  • Kawada J, Lütke-Eversloh T, Steinbüchel A, Marchessault RH (2003) Physical properties of microbial polythioesters: characterization of poly(3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 4:1698–1702

    CAS  PubMed  Google Scholar 

  • Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    CAS  PubMed  Google Scholar 

  • Kawaguchi H, Ogino C, Kondo A (2017) Microbial conversion of biomass into bio-based polymers. Bioresour Technol 245:1664–1673

    CAS  PubMed  Google Scholar 

  • Kersh K (2011) Global bio-based chemical capacity springs to scale. Lux Research Inc., Boston https://members.luxresearchinc.com/research/report/7222. Accessed 30 Jan 2018

  • Khoramnejadian S (2013) Microbial degradation of starch based polypropylene. J Pure Appl Microbiol 7:2857–2860

    CAS  Google Scholar 

  • Kikuchi Y, Hirao M, Narita K, Sugiyama E, Oliveira S, Chapman S, Arakaki M, Cappra C (2013) Environmental performance of biomassderived production: a case study on sugarcane-derived polyethylene. J Chem Eng Jpn 46:319–325

    CAS  Google Scholar 

  • Kikuchi Y, Oshita Y, Mayumi K, Hirao M (2018) Greenhouse gas emissions and socioeconomic effects of biomass-derived products based on structural path and life cycle analyses: a case study of polyethylene and polypropylene in Japan. J Clean Prod 167:289–305

    Google Scholar 

  • Kim DY, Lütke-Eversloh T, Elbanna K, Thakor N, Steinbüchel A (2005) Poly(3-mercaptopropionate): a nonbiodegradable biopolymer? Biomacromolecules 6:897–901

    CAS  PubMed  Google Scholar 

  • Kint D, Muñoz-Guerra S (1999) A review on the potential biodegradability of poly(ethylene terephthalate). Polym Int 48:346–352

    CAS  Google Scholar 

  • Kirk TK, Fenn P (1982) Formation and action of the ligninolytic system in basidiomycetes. In: Frankland JC, Hedger JC, Swift MJ (eds) Decomposer basidiomycetes, Br Mycol Soc Symp 4. Cambridge University Press, Cambridge, pp 67–90

    Google Scholar 

  • Kobayashi S (2010) Lipase-catalyzed polyester synthesis – a green polymer chemistry. Proc Jpn Acad Ser B Phys Biol Sci 86:338–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 78:6203–6216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komula D (2011) Completing the puzzle: 100% plant-derived PET. Bioplastics Mag 6:14–17 http://www.virent.com/resources/completing-the-puzzle/. Accessed 30 Jan 2018

  • Kricheldorf HR, Schwarz G (2007) Poly(thioester)s. J Macromol Sci A 44:625–649

    CAS  Google Scholar 

  • K-Zeitung online (2016) Neue Möglichkeiten für PEF. https://www.k-zeitung.de/neue-moeglichkeiten-fuer-pef/150/1195/95557/. Accessed June 13, 2018

  • Lettner M, Schöggl J-P, Stern T (2017) Factors influencing the market diffusion of bio-based plastics: results of four comparative scenario analyses. J Clean Prod 157:289–298

    Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bögershausen A, Kalwei M, Eckert H, Reichelt R, Liu S-J, Steinbüchel A (2002) Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 1:236–240

    PubMed  Google Scholar 

  • Marvel C, Kotch A (1951) Polythiolesters. 73:1100–1102

  • Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. Chem Biol Eng Rev 4:75–91

    CAS  Google Scholar 

  • Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84

    CAS  Google Scholar 

  • Mukherjee S, Roy Chowdhuri U, Kundu PP (2016) Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Adv 6:2982–2992

    CAS  Google Scholar 

  • Mukherjee S, RoyChaudhuri U, Kundu PP (2017) Anionic surfactant induced oxidation of low density polyethylene followed by its microbial bio-degradation. Int Biodeterior Biodegrad 117:255–268

    CAS  Google Scholar 

  • Müller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    PubMed  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    CAS  Google Scholar 

  • Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers and newly developed. Polymers 9. https://doi.org/10.3390/polym9100523

  • Nikam A (2017) Bio-based Polyolefins market key growth factors and forecast 2017 – 2025. LA News https://www.lanews.org/bio-based-polyolefins-market-key-growth-factors-and-forecast-2017-2025/. Accessed 13 Jun 2018

  • Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141

    CAS  Google Scholar 

  • Philp JC, Ritchie RJ, Allan JEM (2004) Biobased chemicals: the convergence of green chemistry with industrial biotechnology. Trends Biotechnol 31:219–222

    Google Scholar 

  • Philp JC, Ritchie RJ, Guy K (2013) Biobased plastics in a bioeconomy. Trends Biotechnol 31:65–67

    CAS  PubMed  Google Scholar 

  • Plastics Today (2011) Dow and Mitsui announce Brazilian bio-based polyolefin venture. https://www.plasticstoday.com/content/dow-and-mitsui-announce-brazilian-bio-based-polyolefin-venture/23876512016163. Accessed 13 Jun 2018

  • Plastics Today (2012) Five major U.S. brands collaborating on plant-based PET. https://www.plasticstoday.com/content/five-major-us-brands-collaborating-on-plant-based-pet/86885543017544. Accessed 13 Jun 2018

  • PlasticsEurope (2016) The Plastic Industry 2016. https://www.plasticseurope.org/en/resources/market-data. Accessed 13 Jun 2018

  • Plazzo M (2017) AVA-CO2 verkauft Rechte an Biokohle-Technologie. EUWID Neue Energie. https://www.euwid-energie.de/ava-co2-verkauft-rechte-an-biokohle-technologie/. Accessed 13 Jun 2018

  • Prieto A (2016) To be, or not to be biodegradable… that is the question for the bio-based plastics. Microb Biotechnol 9:652–657

    PubMed  PubMed Central  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    CAS  Google Scholar 

  • Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene - a review. Int Biodeterior Biodegrad 88:83–90

    Google Scholar 

  • Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res 35:132–140

    PubMed  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme - laccase - in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210

    CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    CAS  Google Scholar 

  • Sepperumal U, Markandan M (2014) Growth of Actinomycetes and Pseudomonas sp ., biofilms on abiotically pretreated polypropylene surface. European Journal of Zoological Research 3:6–17

  • Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40

    CAS  Google Scholar 

  • Shimokawa K, Kato M, Matsumura S (2011) Enzymatic synthesis and chemical recycling of polythiocaprolactone. Macromol Chem Phys 212:150–158

    CAS  Google Scholar 

  • Shupe AM, Liu S (2012) Ethanol fermentation from hydrolysed hot-water wood extracts by pentose fermenting yeasts. Biomass Bioenergy 39:31–38

    CAS  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    CAS  PubMed  Google Scholar 

  • Smith P (2015) Bio-based sources for terephthalic acid. In: Cheng H, Gross R, Smith P (eds) Green polymer chemistry: biobased materials and biocatalysis. ACS Publications, Washington DC, pp 453–469

    Google Scholar 

  • Steinbüchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613

    PubMed  Google Scholar 

  • Sudhakar M, Doble M, Sriyutha Murthy P, Venkatesan R (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–2013

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioRes 2:707–738

    CAS  Google Scholar 

  • Thakor N, Lütke-Eversloh T, Steinbüchel A (2005) Application of the BPEC pathway for large-scale biotechnological production of poly(3-mercaptopropionate) by recombinant Escherichia coli, including a novel in situ isolation method. Appl Environ Microbiol 71:835–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tullo AH (2016) DuPont, ADM Unveil Route To Biobased Polyester. Chemical & Engineering News. https://cen.acs.org/articles/94/i4/DuPont-ADM-Unveil-Route-Biobased.html?type=paidArticleContent. Accessed 30 Jan 2018

  • Uhrich KE (2003) Antibiotic polymers. World Patent Appl WO 03/066053 A1 (14.08.2003)

  • Ura Y, Al-Sayah M, Montenegro J, Beierle JM, Leman LJ, Ghadiri MR (2009) Dynamic polythioesters via ring-opening polymerization of 1,4-thiazine-2,5-diones. Org Biomol Chem 7:2878–2884

    CAS  PubMed  Google Scholar 

  • Vandenbergh J, Ranieri K, Junkers T (2012) Synthesis of (bio)-degradable poly(β-thioester)s via amine catalyzed thiol-ene click polymerization. Macromol Chem Phys 213:2611–2617

    CAS  Google Scholar 

  • Weber N, Bergander K, Fehling E, Klein E, Vosmann K, Mukherjee KD (2006) Copolymeric polythioesters by lipase-catalyzed thioesterification and transthioesterification of α,ω-alkanedithiols. Appl Microbiol Biotechnol 70:290–297

    CAS  PubMed  Google Scholar 

  • Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology – the future of green chemistry? Green Chem 13:3007

    CAS  Google Scholar 

  • World Economic Forum (2016) The new plastics economy: rethinking the future of plastics. Industry Agenda. https://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics. Accessed 13 Jun 2018

  • Wübbeler JH, Steinbüchel A (2014) New pathways for bacterial polythioesters. Curr Opin Biotechnol 29:85–92

    PubMed  Google Scholar 

  • Xia Y, Wübbeler JH, Qi Q, Steinbüchel A (2012) Employing a recombinant strain of Advenella mimigardefordensis for biotechnical production of homopolythioesters from 3,3′-dithiodipropionic acid. Appl Environ Microbiol 78:3286–3297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    CAS  PubMed  Google Scholar 

  • Yoon M, Jeon H, Kim M (2012) Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J Bioremediation Biodegrad 3:1000144

    Google Scholar 

  • Yoshida S, Hiraga K, Takanaha T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethyleneterephthalate). Science 351:1196–1199

    CAS  PubMed  Google Scholar 

  • You N-H, Higashihara T, Yasuo S, Ando S, Ueda M (2010) Synthesis of sulfur-containing poly(thioester)s with high refractive indices and high Abbe numbers. Polym Chem 1:480

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeßen, C., Steinbüchel, A. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103, 143–157 (2019). https://doi.org/10.1007/s00253-018-9483-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9483-6

Keywords

Navigation