Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing

Abstract

Quorum sensing (QS) is a cell-to-cell communication that is used by bacteria to regulate collective behaviors. Quorum sensing controls virulence factor production in many bacterial species and it is regarded as an attractive target to combat bacterial pathogenicity, especially against antibiotic-resistant bacteria. Chlorogenic acid (CA), abundant in fruits, vegetables, and Chinese herbs, processes multiple activities. In this research, we explored its quorum sensing quenching activity. In Pseudomonas aeruginosa, CA significantly inhibited the formation of biofilm, the ability of swarming, and virulence factors including protease and elastase activities and rhamnolipid and pyocyanin production. CA showed similar inhibitory effects in Chromobacterium violaceum on its biofilm formation, swarming motility, chitinolytic activity and violacein production. We examined the expression of QS-related genes in P.aeruginosa  and found these genes were all downregulated by CA treatment. Computational modeling revealed that CA can form hydrogen bonds with all three QS receptors. Caenorhabditis elegans and mouse infection models were employed to explore the anti-virulence ability of CA and its effect on pathogenesis process in vivo. CA extended the survival period and reduced the quantity of P. aeruginosa in nematode gut, showing a moderate protective effect on C. elegans. In mice wound model, CA-treated groups showed an accelerating healing rate and the bacteria number in wound area was also decreased by CA treatment. It is suggested by our research that CA has potential to be used as an anti-virulence factor in P. aeruginosa infection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alarcon-Herrera N, Flores-Maya S, Bellido B, Garcia-Bores AM, Mendoza E, Avila-Acevedo G, Hernandez-Echeagaray E (2017) Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 109(Pt 2):1018–1025

    Article  CAS  PubMed  Google Scholar 

  2. Allen RC, Popat R, Diggle SP, Brown SP (2014) Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol 12(4):300–308

    Article  CAS  PubMed  Google Scholar 

  3. Annapoorani AV, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26(9):1067–1077

    Article  CAS  PubMed  Google Scholar 

  4. Benevides Bahiense J, Marques FM, Figueira MM, Vargas TS, Kondratyuk TP, Endringer DC, Scherer R, Fronza M (2017) Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm Biol 55(1):991–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhardwaj AK, Vinothkumar K, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 8(1):68–83

    Article  CAS  PubMed  Google Scholar 

  6. Bonomo RA, Szabo D (2006) Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2):S49–S56

    Article  CAS  PubMed  Google Scholar 

  7. Brango-Vanegas J, Costa GM, Ortmann CF, Schenkel EP, Reginatto FH, Ramos FA, Arevalo-Ferro C, Castellanos L (2014) Glycosylflavonoids from Cecropia pachystachya Trecul are quorum sensing inhibitors. Phytomedicine 21(5):670–675

    Article  CAS  PubMed  Google Scholar 

  8. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG (2001) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98(25):14613–14618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6(1):17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cirioni O, Mocchegiani F, Cacciatore I, Vecchiet J, Silvestri C, Baldassarre L, Ucciferri C, Orsetti E, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A (2013) Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 40:77–81

    Article  CAS  PubMed  Google Scholar 

  11. Crousilles A, Maunders E, Bartlett S, Fan C, Ukor EF, Abdelhamid Y, Baker Y, Floto A, Spring DR, Welch M (2015) Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol 10(11):1825–1836

    Article  CAS  PubMed  Google Scholar 

  12. Defoirdt T (2018) Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol 26(4):313–328

    Article  CAS  PubMed  Google Scholar 

  13. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101(5):1339–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duran N, Justo GZ, Duran M, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G (2016) Advances in Chromobacterium violaceum and properties of violacein-its main secondary metabolite: a review. Biotechnol Adv 34(5):1030–1045

    Article  CAS  PubMed  Google Scholar 

  15. El-Mowafy SA, Abd El Galil KH, El-Messery SM, Shaaban MI (2014a) Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb Pathog 74:25–32

    Article  CAS  PubMed  Google Scholar 

  16. El-Mowafy SA, Shaaban MI, Abd El Galil KH (2014b) Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J Appl Microbiol 117(5):1388–1399

    Article  CAS  PubMed  Google Scholar 

  17. Gawlik-Dziki U, Dziki D, Swieca M, Nowak R (2017) Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chem 225:138–145

    Article  CAS  PubMed  Google Scholar 

  18. Goswami S, Sarkar R, Saha P, Maity A, Sarkar T, Das D, Chakraborty PD, Bandyopadhyay S, Ghosh CK, Karmakar S, Sen T (2017) Effect of human placental extract in the management of biofilm mediated drug resistance—a focus on wound management. Microb Pathog 111:307–315

    Article  PubMed  Google Scholar 

  19. Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40(1):86–116

    Article  CAS  PubMed  Google Scholar 

  20. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  PubMed  Google Scholar 

  21. Hancock RE (2014) Collateral damage. Nat Biotechnol 32(1):66–68

    Article  CAS  PubMed  Google Scholar 

  22. Huang WY, Fu L, Li CY, Xu LP, Zhang LX, Zhang WM (2017) Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. J Food Sci 82(5):1239–1246

    Article  CAS  PubMed  Google Scholar 

  23. Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6:e1000982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jorgensen JH (1993) Antimicrobial susceptibility testing of bacteria that grow aerobically. Infect Dis Clin N Am 7(2):393–409

    CAS  Google Scholar 

  25. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, Thiessen PA, Bolton EE, Chen J, Fu V, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  27. Kothari V, Sharma S, Padia D (2017) Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 10(8):744–752

    Article  PubMed  Google Scholar 

  28. Kuo D, Yu G, Hoch W, Gabay D, Long L, Ghannoum M, Nagy N, Harding CV, Viswanathan R, Shoham M (2015) Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to beta-lactam antibiotics. Antimicrob Agents Chemother 59(3):1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41

    Article  CAS  PubMed  Google Scholar 

  31. Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu V (2013) Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiol Lett 341(1):37–44

    Article  CAS  PubMed  Google Scholar 

  32. Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):M398–M403

    Article  CAS  PubMed  Google Scholar 

  33. Marin L, Miguelez EM, Villar CJ, Lombo F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711

    Article  CAS  PubMed  Google Scholar 

  35. Moy TI, Ball AR, Anklesaria Z, Casadei G, Lewis K, Ausubel FM (2006) Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci U S A 103(27):10414–10419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 14(9):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318

    Article  PubMed  PubMed Central  Google Scholar 

  39. Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH, Dayakar BV, Schweizer HP, Vivanco JM (2005) Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect Immun 73(9):5319–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97(9):4885–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67(11):5854–5862

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. Downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8(1):e53441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simonetti O, Cirioni O, Cacciatore I, Baldassarre L, Orlando F, Pierpaoli E, Lucarini G, Orsetti E, Provinciali M, Fornasari E, Di Stefano A, Giacometti A, Offidani A (2016) Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of Staphylococcal infected wound. PLoS One 11(6):e0151956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764

    Article  CAS  PubMed  Google Scholar 

  45. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96(2):715–720

    Article  CAS  PubMed  Google Scholar 

  46. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang L, Bi C, Cai H, Liu B, Zhong X, Deng X, Wang T, Xiang H, Niu X, Wang D (2015) The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front Microbiol 6:1031

    PubMed  PubMed Central  Google Scholar 

  48. Welsh MA, Eibergen NR, Moore JD, Blackwell HE (2015) Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 137(4):1510–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wikler MA (1990) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Clinical & Laboratory Standards Institute

  50. Wu H, Moser C, Wang HZ, Hoiby N, Song ZJ (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1–7

    Article  CAS  PubMed  Google Scholar 

  51. Yang YX, Xu ZH, Zhang YQ, Tian J, Weng LX, Wang LH (2012) A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J Microbiol 50(6):987–993

    Article  CAS  PubMed  Google Scholar 

  52. Zhu H, He CC, Chu QH (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52(3):269–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the National Natural Science Foundation of China (Grant Nos. 81301902, 81773837), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Double First - Class Uiversity Project (CPU2018GY14, CPU2018GY15).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Zheng Qiu.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical statement

All studies were performed in compliance with the National Institutes of Health Guide for the Care and Use of laboratory Animals and approved by IACUC (Institutional Animal Care and Use Committee of China Pharmaceutical University).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chu, W., Ye, C. et al. Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl Microbiol Biotechnol 103, 903–915 (2019). https://doi.org/10.1007/s00253-018-9482-7

Download citation

Keywords

  • Chlorogenic acid
  • Quorum sensing inhibitor
  • Pseudomonas aeruginosa
  • Anti-virulence