Abd Rahman RNZR, Leow TC, Salleh AB, Basri M (2007) Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol 7:77. https://doi.org/10.1186/1471-2180-7-77
CAS
Article
PubMed
Google Scholar
Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P (2016) Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39:527–533. https://doi.org/10.1016/j.syapm.2016.09.004; erratum to this report can be found in https://doi.org/10.1016/j.syapm.2018.07.001
Alkhalili RN, Hatti-Kaul R, Canbäck B (2015) Genome sequence of Geobacillus sp. strain ZGt-1, an antibacterial peptide-producing bacterium from hot springs in Jordan. Genome Announc 3:e00799–15. https://doi.org/10.1128/genomeA.00799-15
Article
PubMed
PubMed Central
Google Scholar
Amoozegar MA, Bagheri M, Makhdoumi A, Mehrshad M, Didari M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2016) Oceanobacillus longus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 66:4225–4230. https://doi.org/10.1099/ijsem.0.001339
Anutrakunchai C, Niamsanit S, Wangsomnuk PP, Trongpanich Y (2010) Isolation and characterization of vitamin B6-producing thermophilic bacterium, Geobacillus sp. H6a. J Gen Appl Microbiol 56:273–279. https://doi.org/10.2323/jgam.56.273
CAS
Article
PubMed
Google Scholar
Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206. https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
CAS
Article
Google Scholar
Asial I, Cheng YX, Engman H, Dollhopf M, Wu B, Nordlund P, Cornvik T (2013) Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun 4:2901. https://doi.org/10.1038/ncomms3901
Assareh R, Zahiri HS, Noghabi KA, Aminzadeh S, Khaniki GB (2012) Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresour Technol 120:99–105. https://doi.org/10.1016/j.biortech.2012.06.027
CAS
Article
PubMed
Google Scholar
Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol 54:2197–2201. https://doi.org/10.1099/ijs.0.63231-0
CAS
Article
PubMed
Google Scholar
Bartholomew JW, Paik G (1966) Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. J Bacteriol 92:635–638
CAS
PubMed
PubMed Central
Google Scholar
Bergdale TE, Hughes SR, Bang SS (2014) Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota. Appl Biochem Biotechnol 172:3488–3501. https://doi.org/10.1007/s12010-014-0784-7
CAS
Article
PubMed
Google Scholar
Bezuidt OK, Pierneef R, Gomri AM, Adesioye F, Makhalanyane TP, Kharroub K, Cowan DA (2016) The Geobacillus pan-genome: implications for the evolution of the genus. Front Microbiol 7:723. https://doi.org/10.3389/fmich.2010.00723
Article
PubMed
PubMed Central
Google Scholar
Bhalla A, Kainth AS, Sani RK (2013) Draft genome sequence of lignocellulose-degrading thermophilic bacterium Geobacillus sp. strain WSUCF1. Genome Announc 1:e00595–13. https://doi.org/10.1128/genomeA.00595-13
Article
PubMed
PubMed Central
Google Scholar
Bommarius AS, Broering JM, Chaparro-Riggers JF, Polizzi KM (2006) High-throughput screening for enhanced protein stability. Curr Opin Biotechnol 17:606–610. https://doi.org/10.1016/j.copbio.2006.10.001
CAS
Article
Google Scholar
Bose S, Mukherjee T, Sen U, Roy C, Rameez MJ, Ghosh W, Mukhopadhyay SK (2016) Genome sequence of the multiple-protease-producing strain Geobacillus thermoleovorans N7, a thermophilic bacterium isolated from Paniphala Hot Spring, West Bengal, India. Genome Announc 4:e01202–16. https://doi.org/10.1128/genomeA.01202-16
Article
PubMed
PubMed Central
Google Scholar
Bosma EF, van de Weijer AHP, Daas MJA, van der Oost J, de Vos WM, van Kranenburg R (2015) Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET 138 as a new biocatalyst. Appl Environ Microbiol 81:1874–1883. https://doi.org/10.1128/aem.03640-14
Article
PubMed
PubMed Central
Google Scholar
Brouns SJJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J (2005) Engineering a selectable marker for hyperthermophiles. J Biol Chem 280:11422–11431. https://doi.org/10.1074/jbc.M413623200
CAS
Article
PubMed
Google Scholar
Brumm P, Land ML, Hauser LJ, Jeffries CD, Chang Y, Mead DA (2015a) Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci 10:81. https://doi.org/10.1186/s40793-015-0075-0; erratum to this report can be found in https://doi.org/10.1186/s40793-016-0133-2
Brumm PJ, Land ML, Mead DA (2015b) Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci 10:73. https://doi.org/10.1186/s40793-015-0031-z
Brumm PJ, Land ML, Mead DA (2016) Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost. Stand Genomic Sci 11:33. https://doi.org/10.1186/s40793-016-0153-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Bryanskaya AV, Rozanov AS, Logacheva MD, Kotenko AV, Peltek SE (2014) Draft genome sequence of Geobacillus icigianus strain G1w1T isolated from hot springs in the valley of Geysers, Kamchatka (Russian Federation). Genome Announc 2:e01098–14. https://doi.org/10.1128/genomeA.01098-14
Article
PubMed
PubMed Central
Google Scholar
Burgess SA, Flint SH, Lindsay D (2013) Characterization of thermophilic bacilli from a milk powder processing plant. J Appl Microbiol 116:350–359. https://doi.org/10.1111/jam.12366
CAS
Article
PubMed
Google Scholar
Burgess SA, Flint SH, Lindsay D, Cox MP, Biggs PJ (2017) Insights into the Geobacillus stearothermophilus species based on phylogenomic principles. BMC Microbiol 17:140. https://doi.org/10.1186/s12866-017-1047-x
Carlson C, Singh NK, Bibra M, Sani RK, Venkateswaran K (2018) Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments. Appl Microbiol Biotechnol 102:1869–1887. https://doi.org/10.1007/s00253-017-8712-8
CAS
Article
PubMed
Google Scholar
Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 283:23–29. https://doi.org/10.1111/j.1574-6968.2008.01136.x
CAS
Article
PubMed
Google Scholar
Charbonneau DM, Meddeb-Mouelhi F, Boissinot M, Sirois M, Beauregard M (2012) Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost. Indian J Microbiol 52:41–47. https://doi.org/10.1007/s12088-011-0156-8
CAS
Article
PubMed
Google Scholar
Chautard H, Blas-Galindo E, Menguy T, Grand’Moursel L, Cava F, Berenguer J, Delcourt M (2007) An activity-independent selection system of thermostable protein variants. Nat Methods 4:919–921. https://doi.org/10.1038/nmeth1090
CAS
Article
PubMed
Google Scholar
Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485. https://doi.org/10.1099/ijs.0.030346-0
CAS
Article
PubMed
Google Scholar
Correa-Llantén D, Larraín-Linton J, Muñoz PA, Castro M, Boehmwald F, Blamey JM (2013) Characterization of the thermophilic bacterium Geobacillus sp. strain GWE1 isolated from a sterilization oven. J Microbiol Biotechnol 41:278–283. https://doi.org/10.4014/kjmb.1301.01004
Article
Google Scholar
Cuebas M, Sannino D, Bini E (2011) Isolation and characterization of an arsenic resistant Geobacillus kaustophilus strain from geothermal soils. J Basic Microbiol 51:364–371. https://doi.org/10.1002/jobm.201000314
CAS
Article
PubMed
Google Scholar
Daas MJA, Vriesendorp B, van de Weijer AHP, van der Oost J, van Kranenburg R (2018) Complete genome sequence of Geobacillus thermodenitrificans T12, a potential host for biotechnological applications. Curr Microbiol 75:49–56. https://doi.org/10.1007/s00284-017-1349-0
CAS
Article
PubMed
Google Scholar
Daroonpunt R, Tanasupawat S, Kudo T, Ohkuma M, Itoh T (2016) Virgibacillus kapii sp. nov., isolated from Thai shrimp paste (Ka-pi). Int J Syst Evol Microbiol 66:1832–1837. https://doi.org/10.1099/ijsem.0.000951
CAS
Article
PubMed
Google Scholar
Das S, Jean J, Kar S, Chou M, Chen C (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120. https://doi.org/10.1016/j.jhazmat.2014.03.012
CAS
Article
PubMed
Google Scholar
De Maayer P, Brumm PJ, Mead DA, Cowan DA (2014) Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics 15:836. https://doi.org/10.1186/1471-2164-15-836
Article
PubMed
PubMed Central
Google Scholar
Di Donato P, Romano I, Mastascusa V, Poli A, Orlando P, Pugliese M, Nicolaus B (2018) Survival and adaptation of the thermophilic species Geobacillus thermantarcticus in simulated spatial conditions. Orig Life Evol Biosph 48:141–158. https://doi.org/10.1007/s11084-017-9540-7
CAS
Article
PubMed
Google Scholar
Didari M, Amoozegar MA, Bagheri M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2012) Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. Int J Syst Evol Microbiol 62:2691–2697. https://doi.org/10.1099/ijs.0.034173-0
CAS
Article
PubMed
Google Scholar
Donk PJ (1920) A highly resistant thermophilic organism. J Bacteriol 5:373–374
CAS
PubMed
PubMed Central
Google Scholar
Drejer EB, Hakvåg S, Irla M, Brautaset T (2018) Genetic tools and techniques for recombinant expression in thermophilic Bacillaceae. Microorganisms 6:E42. https://doi.org/10.3390/microorganisms6020042
Article
PubMed
Google Scholar
Egan K, Kelleher P, Field D, Rea MC, Ross RP, Cotter PD, Hill C (2017) Genome sequence of Geobacillus stearothermophilus DSM 458, an antimicrobial-producing thermophilic bacterium, isolated from a sugar beet factory. Genome Announc 5:e01172–17. https://doi.org/10.1128/genomeA.01172-17
Article
PubMed
PubMed Central
Google Scholar
Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607. https://doi.org/10.1073/pnas.0609650104
CAS
Article
PubMed
PubMed Central
Google Scholar
Fields ML, Chen Lee PP (1974) Bacillus stearothermophilus in soils of Iceland. Appl Microbiol 28:638–640
CAS
PubMed
PubMed Central
Google Scholar
Foit L, Morgan GJ, Kern MJ, Steimer LR, von Hacht AA, Titchmarsh J, Warriner SL, Radford SE, Bardwell JCA (2009) Optimizing protein stability in vivo. Mol Cell 36:861–871. https://doi.org/10.1016/j.molcel.2009.11.022
CAS
Article
PubMed
PubMed Central
Google Scholar
Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397. https://doi.org/10.1080/10409230701648494
CAS
Article
PubMed
PubMed Central
Google Scholar
Frenzel E, Legebeke J, van Stralen A, van Kranenburg R, Kuipers OP (2018) In vivo selection of sfGFP variants with improved and reliable functionality in industrially important thermophilic bacteria. Biotechnol Biofuels 11:8. https://doi.org/10.1186/s13068-017-1008-5
Article
PubMed
PubMed Central
Google Scholar
Fujii K, Tominaga Y, Okunaka J, Yagi H, Ohshiro T, Suzuki H (2018) Microbial and genomic characterization of Geobacillus thermodenitrificans OS27, a marine thermophile that degrades diverse raw seaweeds. Appl Microbiol Biotechnol 102:4901–4913. https://doi.org/10.1007/s00253-018-8958-9
CAS
Article
PubMed
Google Scholar
Gaultier NE, Junqueira ACM, Uchida A, Purbojati RW, Houghton JNI, Chénard C, Wong A, Kolundžija S, Clare ME, Kushwaha KK, Panicker D, Putra A, Kee C, Premkrishnan BNV, Heinle CE, Lim SBY, Vettath VK, Drautz-Moses DI, Schuster SC (2018) Genome sequence of Geobacillus thermoleovorans SGAir0734, isolated from Singapore air. Genome Announc 6:e00636–18. https://doi.org/10.1128/genomeA.00636-18
Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias RM, Chan K (2013) Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 97:1475–1488. https://doi.org/10.1007/s00253-012-4663-2
CAS
Article
PubMed
Google Scholar
Gordon RE, Smith NR (1949) Aerobic sporeforming bacteria capable of growth at high temperatures. J Bacteriol 56:327–341
Google Scholar
Harrington LB, Paez-Espino D, Staahl BT, Chen JS, Ma E, Kyrpides NC, Doudna JA (2017) A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 8:1424. https://doi.org/10.1038/s41467-017-01408-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H (1999) Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951–956. https://doi.org/10.1093/oxfordjournals.jbchem.a022539
CAS
Article
PubMed
Google Scholar
Hussein AH, Lisowska BK, Leak DJ (2015) The genus Geobacillus and their biotechnological potential. Adv Appl Microbiol 92:1–48. https://doi.org/10.1016/bs.aambs.2015.03.001
Article
PubMed
Google Scholar
Imanaka T, Fujii M, Aramori I, Aiba S (1982) Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis. J Bacteriol 149:824–830
CAS
PubMed
PubMed Central
Google Scholar
Jeon CO, Lim J, Lee J, Xu L, Jiang C, Kim C (2005) Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896. https://doi.org/10.1099/ijs.0.63456-0
CAS
Article
PubMed
Google Scholar
Juárez AGV, Dreyer J, Göpel PK, Koschke N, Frank D, Märkl H, Müller R (2009) Characterisation of a new thermoalkaliphilic bacterium for the production of high-quality hemp fibres, Geobacillus thermoglucosidasius strain PB94A. Appl Microbiol Biotechnol 83:521–527. https://doi.org/10.1007/s00253-009-1969-9
CAS
Article
Google Scholar
Kämpfer P, Glaeser SP, Busse H–J (2013) Transfer of Bacillus schlegelii to a novel genus and proposal of Hydrogenibacillus schlegelii gen. nov., comb. nov. Int J Syst Evol Microbiol 63:1723–1727. https://doi.org/10.1099/ijs.0.045146-0
CAS
Article
PubMed
Google Scholar
Kananavičiūtė R, Čitavičius D (2015) Genetic engineering of Geobacillus spp. J Microbiol Methods 111:31–39. https://doi.org/10.1016/j.mimet.2015.02.002
CAS
Article
PubMed
Google Scholar
Kim P, Lee J, Park D, Shin K, Kim J, Kim C (2012) Gracilibacillus bigeumensis sp. nov., a moderately halophilic bacterium from solar saltern soil. Int J Syst Evol Microbiol 62:1857–1863. https://doi.org/10.1099/ijs.0.034264-0
CAS
Article
PubMed
Google Scholar
Kim S, Lee J, Han S, Whang K (2015) Halobacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 65:4434–4440. https://doi.org/10.1099/ijsem.0.000595
CAS
Article
PubMed
Google Scholar
Kinfu BM, Jahnke M, Janus M, Besirlioglu V, Roggenbuck M, Meurer R, Vojcic L, Borchert M, Schwaneberg U, Chow J, Streit WR (2017) Recombinant RNA polymerase from Geobacillus sp. GHH01 as tool for rapid generation of metagenomic RNAs using in vitro technologies. Biotechnol Bioeng 114:2739–2752. https://doi.org/10.1002/bit.26436
CAS
Article
PubMed
Google Scholar
Kobayashi J, Furukawa M, Ohshiro T, Suzuki H (2015a) Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures. Appl Microbiol Biotechnol 99:5563–5572. https://doi.org/10.1007/s00253-015-6522-4
CAS
Article
PubMed
Google Scholar
Kobayashi J, Tanabiki M, Doi S, Kondo A, Ohshiro T, Suzuki H (2015b) Unique plasmids generated via pUC replicon mutagenesis in an error-prone thermophile derived from Geobacillus kaustophilus HTA426. Appl Environ Microbiol 81:7625–7632. https://doi.org/10.1128/aem.01574-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuisiene N, Raugalas J, Chitavichius D (2004) Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 54:1991–1995. https://doi.org/10.1099/ijs.0.02976-0
CAS
Article
PubMed
Google Scholar
La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K (2007) Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol 73:2600–2611. https://doi.org/10.1128/aem.03007-06
Article
PubMed
PubMed Central
Google Scholar
Lambros RJ, Mortimer JR, Forsdyke DR (2003) Optimum growth temperature and the base composition of open reading frames in prokaryotes. Extremophiles 7:443–450. https://doi.org/10.1007/s00792-003-0353-4
CAS
Article
PubMed
Google Scholar
Liao H, McKenzie T, Hageman R (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A 83:576–580. https://doi.org/10.1073/pnas.83.3.576
CAS
Article
PubMed
PubMed Central
Google Scholar
Marchant R, Banat IM, Rahman TJ, Berzano M (2002) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602. https://doi.org/10.1046/j.1462-2920.2002.00344.x
CAS
Article
PubMed
Google Scholar
Marchant R, Franzetti A, Pavlostathis SG, Tas DO, Erdbrügger I, Ünyayar A, Mazmanci MA, Banat IM (2008) Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol 78:841–852. https://doi.org/10.1007/s00253-008-1372-y
CAS
Article
PubMed
Google Scholar
Matsumura M, Aiba S (1985) Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus. J Biol Chem 260:5298–5303
Google Scholar
McMullan G, Christie JM, Rahman TJ, Banat IM, Ternan NG, Marchant R (2004) Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem Soc Trans 32:214–217. https://doi.org/10.1042/bst0320214
CAS
Article
PubMed
Google Scholar
Miñana-Galbis D, Pinzón DL, Lorén JG, Manresa A, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:1600–1604. https://doi.org/10.1099/00207713-51-2-433
Article
PubMed
Google Scholar
Mizuno T, Ohshiro T, Suzuki H (2017) Plasmid curing is a promising approach to improve thermophiles for biotechnological applications: perspectives in archaea. In: Sghaier H (ed) Archaea - new biocatalysts, novel pharmaceuticals and various biotechnological applications. InTech, Rijeka, pp 83–99. https://doi.org/10.5772/intechopen.70041
Google Scholar
Mougiakos I, Mohanraju P, Bosma EF, Vrouwe V, Bou MF, Naduthodi MIS, Gussak A, Brinkman RBL, van Kranenburg R, van der Oost J (2017) Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun 8:1647. https://doi.org/10.1038/s41467-017-01591-4
Muhd Sakaff MKL, Abdul Rahman AY, Saito JA, Hou SB, Alam M (2011) Complete genome sequence of the thermophilic bacterium Geobacillus thermoleovorans CCB_US3_UF5. J Bacteriol 194:1239–1239. https://doi.org/10.1128/jb.06580-11
Article
Google Scholar
Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius, and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446. https://doi.org/10.1099/00207713-51-2-433
CAS
Article
PubMed
Google Scholar
Nazina TN, Sokolova DS, Grigoryan AA, Shestakova NM, Mikhailova EM, Poltaraus AB, Tourova TP, Lysenko AM, Osipov GA, Belyaev SS (2005) Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 28:43–53. https://doi.org/10.1016/j.syapm.2004.09.001
CAS
Article
PubMed
Google Scholar
Ortiz EM, Berretta MF, Navas LE, Benintende GB, Amadio AF, Zandomeni RO (2015) Draft genome sequence of Geobacillus sp. isolate T6, a thermophilic bacterium collected from a thermal spring in Argentina. Genome Announc 3:e00743–15. https://doi.org/10.1128/genomeA.00743-15
Article
PubMed
PubMed Central
Google Scholar
Perfumo A, Marchant R (2010) Global transport of thermophilic bacteria in atmospheric dust. Environ Microbiol Rep 2:333–339. https://doi.org/10.1111/j.1758-2229.2010.00143.x
CAS
Article
PubMed
Google Scholar
Petkauskaite R, Blom J, Goesmann A, Kuisiene N (2017) Draft genome sequence of pectic polysaccharide-degrading moderate thermophilic bacterium Geobacillus thermodenitrificans DSM 101594. Braz J Microbiol 48:7–8. https://doi.org/10.1016/j.bjm.2016.06.013
Article
PubMed
Google Scholar
Poli A, Romano I, Caliendo G, Nicolaus G, Orlando P, de Falco A, Lama L, Gambacorta A, Nicolaus B (2006) Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost. J Gen Appl Microbiol 52:223–234. https://doi.org/10.2323/jgam.52.223
CAS
Article
PubMed
Google Scholar
Poli A, Guven K, Romano I, Pirinccioglu H, Guven RG, Euzeby JPM, Matpan F, Acer O, Orlando P, Nicolaus B (2012) Geobacillus subterraneus subsp. aromaticivorans subsp. nov., a novel thermophilic and alkaliphilic bacterium isolated from a hot spring in Sirnak, Turkey. J Gen Appl Microbiol 58:437–446. https://doi.org/10.2323/jgam.58.437
CAS
Article
PubMed
Google Scholar
Rahman TJ, Marchant R, Banat IM (2004) Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem Soc Trans 32:209–213. https://doi.org/10.1042/bst0320209
CAS
Article
PubMed
Google Scholar
Ren B, Yang N, Wang J, Ma X, Wang Q, Xie F, Guo H, Liu Z, Pugin B, Zhang L (2013) Amphibacillus marinus sp. nov., a member of the genus Amphibacillus isolated from marine mud. Int J Syst Evol Microbiol 63:1485–1491. https://doi.org/10.1099/ijs.0.045807-0
CAS
Article
PubMed
Google Scholar
Romano I, Poli A, Lama L, Gambacorta A, Nicolaus B (2005) Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J Gen Appl Microbol 51:183–189. https://doi.org/10.2323/jgam.51.183
CAS
Article
Google Scholar
Rozanov A, Logacheva MD, Peltek SE (2014) Draft genome sequences of Geobacillus stearothermophilus strains 22 and 53, isolated from the Garga hot spring in the Barguzin river valley of the Russian Federation. Genome Announc 2:e01205–14. https://doi.org/10.1128/genomeA.01205-14
Article
PubMed
PubMed Central
Google Scholar
Sabath N, Ferrada E, Barve A, Wagner A (2013) Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol Evol 5:966–977. https://doi.org/10.1093/gbe/evt050
CAS
Article
PubMed
PubMed Central
Google Scholar
Savery NJ (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 15:326–333. https://doi.org/10.1016/j.tim.2007.05.005
CAS
Article
PubMed
Google Scholar
Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Völker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431. https://doi.org/10.1099/00207713-51-2-425
CAS
Article
PubMed
Google Scholar
Shahinyan G, Margaryan A, Panosyan H, Trchounian A (2017) Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs. BMC Microbiol 17:103. https://doi.org/10.1186/s12866-017-1016-4
Shimura M, Mukerjee-Dhar G, Kimbara K, Nagato H, Kiyohara H, Hatta T (1999) Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol Lett 178:87–93. https://doi.org/10.1111/j.1574-6968.1999.tb13763.x
CAS
Article
PubMed
Google Scholar
Siddiqui MA, Rashid N, Ayyampalayam S, Whitman WB (2014) Draft genome sequence of Geobacillus thermopakistaniensis strain MAS1. Genome Announc 2:e00559–14. https://doi.org/10.1128/genomeA.00559-14
Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16:955–960. https://doi.org/10.1038/nbt1098-955
CAS
Article
PubMed
Google Scholar
Sood N, Lal B (2008) Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems. Chemosphere 70:1445–1451. https://doi.org/10.1016/j.chemosphere.2007.08.071
CAS
Article
PubMed
Google Scholar
de Souza YPA, da Mota FF, Rosado AS (2017) Draft genome sequence of Geobacillus sp. LEMMY01, a thermophilic bacterium isolated from the site of a burning grass pile. Genome Announc 5:e00200–17. https://doi.org/10.1128/genomeA.00200-17
Stackebrandt E, Ludwig W, Weizenegger M, Dorn S, McGill TJ, Fox GE, Woese CR, Schubert W, Schleifer K (1987) Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. J Gen Microbiol 133:2523–2529. https://doi.org/10.1099/00221287-133-9-2523
CAS
Article
PubMed
Google Scholar
Studholme DJ (2015) Some (bacilli) like it hot: genomics of Geobacillus species. Microbial Biotechnol 8:40–48. https://doi.org/10.1111/1751-7915.12161
Article
Google Scholar
Studholme DJ, Jackson RA, Leak DJ (1999) Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol Lett 172:85–90. https://doi.org/10.1111/j.1574-6968.1999.tb13454.x
CAS
Article
PubMed
Google Scholar
Stuknyte M, Guglielmetti S, Mora D, Kuisiene N, Parini C, Citavicius D (2008) Complete nucleotide sequence of pGS18, a 62.8-kb plasmid from Geobacillus stearothermophilus strain 18. Extremophiles 12:415–429. https://doi.org/10.1007/s00792-008-0145-y
CAS
Article
PubMed
Google Scholar
Sultanpuram VR, Mothe T (2016) Salipaludibacillus aurantiacus gen. nov., sp. nov. a novel alkali tolerant bacterium, reclassification of Bacillus agaradhaerens as Salipaludibacillus agaradhaerens comb. nov. and Bacillus neizhouensis as Salipaludibacillus neizhouensis comb. nov. Int J Syst Evol Microbiol 66:2747–2753. https://doi.org/10.1099/ijsem.0.001117
CAS
Article
PubMed
Google Scholar
Sun Y, Ning Z, Yang F, Li X (2015) Characteristics of newly isolated Geobacillus sp. ZY-10 degrading hydrocarbons in crude oil. Pol J Microbiol 64:253–263
Article
Google Scholar
Suzuki H (2017) Geobacillus kaustophilus HTA426: a model organism for moderate thermophiles. In: Berhardt LV (ed) Advances in medicine and biology. Nova Science Publishers, New York, pp 75–108
Google Scholar
Suzuki H, Kobayashi J, Wada K, Furukawa M, Doi K (2015) Thermoadaptation-directed enzyme evolution in an error-prone thermophile derived from Geobacillus kaustophilus HTA426. Appl Environ Microbiol 81:149–158. https://doi.org/10.1128/aem.02577-14
Article
PubMed
Google Scholar
Suzuki H, Taketani T, Kobayashi J, Ohshiro T (2018) Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles. J Antibiot 71:382–389. https://doi.org/10.1038/s41429-017-0003-1
CAS
Article
PubMed
Google Scholar
Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285. https://doi.org/10.1016/s0378-1097(97)00211-5
CAS
Article
PubMed
Google Scholar
Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303. https://doi.org/10.1093/nar/gkh970
CAS
Article
PubMed
PubMed Central
Google Scholar
Tayyab M, Rashid N, Akhtar M (2011) Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase. J Biosci Bioeng 111:272–278. https://doi.org/10.1016/j.jbiosc.2010.11.015
CAS
Article
PubMed
Google Scholar
Wada K, Kobayashi J, Furukawa M, Doi K, Ohshiro T, Suzuki H (2016) A thiostrepton resistance gene and its mutants serve as selectable markers in Geobacillus kaustophilus HTA426. Biosci Biotechnol Biochem 80:368–375. https://doi.org/10.1080/09168451.2015.1079478
CAS
Article
PubMed
Google Scholar
Wang L, Tang Y, Wang S, Liu R, Liu M, Zhang Y, Liang F, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356. https://doi.org/10.1007/s00792-006-0505-4
CAS
Article
PubMed
Google Scholar
White D, Sharp RJ, Priest FG (1993) A polyphasic taxonomic geographical area study of thermophilic bacilli from a wide geographical area. Antonie Van Leeuwenhoek 64:357–386
Article
Google Scholar
Wiegand S, Rabausch U, Chow J, Daniel R, Streit WR, Lieseganga H (2013) Complete genome sequence of Geobacillus sp. strain GHH01, a thermophilic lipase-secreting bacterium. Genome Announc 1:e0009213. https://doi.org/10.1128/genomeA.00092-13
Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108
CAS
Article
Google Scholar
Wissuwa J, Stokke R, Fedøy A, Lian K, Smalås AO, Steen IH (2016) Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site. Stand Genomic Sci 11:16. https://doi.org/10.1186/s40793-016-0137-y
Xu K, He Z, Mao Y, Sheng R, Sheng Z (1993) On two transposable elements from Bacillus stearothermophilus. Plasmid 29:1–9. https://doi.org/10.1006/plas.1993.1001
CAS
Article
PubMed
Google Scholar
Yang SH, Cho J, Lee S, Abanto OD, Kim S, Ghosh C, Lim J, Hwang S (2013) Isolation and characterization of novel denitrifying bacterium Geobacillus sp. SG-01 strain from wood chips composted with swine manure. Asian-Australas J Anim Sci 26:1651–1658. https://doi.org/10.5713/ajas.2013.13184
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H (2012) Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology 158:1942–1952. https://doi.org/10.1099/mic.0.059980-0
CAS
Article
PubMed
Google Scholar
Zeigler DR (2001) The genus Geobacillus: Bacillus genetic stock center catalog of strains, 7th edn, vol 3. Bacillus genetic stock center, Columbus
Zeigler DR (2005) Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 55:1171–1179. https://doi.org/10.1099/ijs.0.63452
CAS
Article
PubMed
Google Scholar
Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160:1–11. https://doi.org/10.1099/mic.0.071696-0
CAS
Article
PubMed
Google Scholar
Zhang J, Zhang X, Liu J, Li R, Shen B (2012) Isolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. Bioresour Technol 124:83–89. https://doi.org/10.1016/j.biortech.2012.08.044
CAS
Article
PubMed
Google Scholar
Zhu L, Li M, Guo S, Wang W (2016) Draft genome sequence of a thermophilic desulfurization bacterium, Geobacillus thermoglucosidasius strain W-2. Genome Announc 4:e00793–16. https://doi.org/10.1128/genomeA.00793-16
Zhu Y, Wang G, Ni H, Xiao A, Cai H (2014) Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World J Microbiol Biotechnol 30:1347–1357. https://doi.org/10.1007/s11274-013-1536-5
CAS
Article
PubMed
Google Scholar