Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities

Abstract

Lactic acid bacteria (LAB) are attractive hosts for the expression of heterologous proteins and can be engineered to deliver therapeutic proteins or peptides to mucosal surfaces. The gastric stable pentadecapeptide BPC-157 is able to prevent and treat gastrointestinal inflammation by reducing the production of reactive oxygen species (ROS). In this study, we used LAB Lactococcus lactis as a vector to deliver BPC-157 by surface display and trypsin shedding or by secretion to the growth medium. Surface display of BPC-157 was achieved by fusing it with basic membrane protein A (BmpA) or with the peptidoglycan binding domain of AcmA and Usp45 secretion signal. While the expression of BmpA-fusion proteins was higher than that of AcmA/Usp45-fusion protein, the surface display ability of BPC-157 was approximately 14-fold higher with AcmA/Usp45-fusion protein. Release of BPC-157 from the bacterial surface or from isolated fusion proteins by trypsinization was demonstrated with anti-BPC-157 antibodies or by mass spectrometry. The concentration of BPC-157 delivered by surface display via AcmA/Usp45-fusion was 30 ng/ml. This increased to 117 ng/ml by Usp45 signal-mediated secretion, making the latter the most effective lactococcal delivery approach for BPC-157. Secreted BPC-157 significantly decreased ROS production in 149BR fibroblast cell model, suggesting its potential benefit in the treatment of intestinal inflammations. Additionally, a comparison of different modes of small peptide delivery by L. lactis, performed in the present study, will facilitate the future use of L. lactis as peptide delivery vehicle.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97(2):809–817. https://doi.org/10.1007/s00253-012-4241-7

    Article  Google Scholar 

  2. Ananthakrishnan AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12(4):205–217. https://doi.org/10.1038/nrgastro.2015.34

    Article  PubMed  Google Scholar 

  3. Berlec A, Zadravec P, Jevnikar Z, Strukelj B (2011) Identification of candidate carrier proteins for surface display on Lactococcus lactis by theoretical and experimental analyses of the surface proteome. Appl Environ Microbiol 77(4):1292–1300. https://doi.org/10.1128/AEM.02102-10

    CAS  Article  PubMed  Google Scholar 

  4. Berlec A, Ravnikar M, Strukelj B (2012) Lactic acid bacteria as oral delivery systems for biomolecules. Pharmazie 67(11):891–898. https://doi.org/10.1691/ph.2012.1705

    CAS  Article  PubMed  Google Scholar 

  5. Berlec A, Skrlec K, Kocjan J, Olenic M, Strukelj B (2018) Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Sci Rep 8(1):1009. https://doi.org/10.1038/s41598-018-19402-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernasconi E, Germond JE, Delley M, Fritsche R, Corthesy B (2002) Lactobacillus bulgaricus proteinase expressed in Lactococcus lactis is a powerful carrier for cell wall-associated and secreted bovine beta-lactoglobulin fusion proteins. Appl Environ Microbiol 68(6):2917–2923. https://doi.org/10.1128/AEM.68.6.2917-2923.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Brcic L, Brcic I, Staresinic M, Novinscak T, Sikiric P, Seiwerth S (2009) Modulatory effect of gastric pentadecapeptide BPC 157 on angiogenesis in muscle and tendon healing. J Physiol Pharmacol 60(Suppl 7):191–196

    PubMed  Google Scholar 

  8. Carvalho RDO, do Carmo FLR, de Oliveira Junior A, Langella P, Chatel JM, Bermudez-Humaran LG, Azevedo V, de Azevedo MS (2017) Use of wild type or recombinant lactic acid bacteria as an alternative treatment for gastrointestinal inflammatory diseases: a focus on inflammatory bowel diseases and mucositis. Front Microbiol 8:800. https://doi.org/10.3389/fmicb.2017.00800

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cerovecki T, Bojanic I, Brcic L, Radic B, Vukoja I, Seiwerth S, Sikiric P (2010) Pentadecapeptide BPC 157 (PL 14736) improves ligament healing in the rat. J Orthop Res 28(9):1155–1161. https://doi.org/10.1002/jor.21107

    CAS  Article  PubMed  Google Scholar 

  10. Chang CH, Tsai WC, Lin MS, Hsu YH, Pang JH (2011) The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration. J Appl Physiol (1985) 110(3):774–780. https://doi.org/10.1152/japplphysiol.00945.2010

    CAS  Article  Google Scholar 

  11. Chatel JM, Langella P, Adel-Patient K, Commissaire J, Wal JM, Corthier G (2001) Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol 8(3):545–551. https://doi.org/10.1128/CDLI.8.3.545-551.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW (2017) Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 40:8–16. https://doi.org/10.1016/j.cbpa.2017.04.011

    CAS  Article  PubMed  Google Scholar 

  13. Dieye Y, Usai S, Clier F, Gruss A, Piard JC (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183(14):4157–4166. https://doi.org/10.1128/JB.183.14.4157-4166.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Drmic D, Kolenc D, Ilic S, Bauk L, Sever M, Zenko Sever A, Luetic K, Suran J, Seiwerth S, Sikiric P (2017) Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME. World J Gastroenterol 23(29):5304–5312. https://doi.org/10.3748/wjg.v23.i29.5304

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Duzel AVJ, Antunovic M, Malekinusic D, Vrdoljak B, Samara M, Gojkovic S, Krezic I, Vidovic T, Bilic Z, Knezevic M, Sever M, Lojo N, Kokot A, Kolovrat M, Drmic D, Vukojevic J, Kralj T, Kasnik K, Siroglavic M, Seiwerth S, Sikiric P (2017) Stable gastric pentadecapeptide BPC 157 in the treatment of colitis and ischemia and reperfusion in rats: new insights. World J Gastroenterol 23(48):8465–8488. https://doi.org/10.3748/wjg.v23.i48.8465

    Article  PubMed  PubMed Central  Google Scholar 

  16. Filosevic A, Waldowski RA, Vidovic T, Sikiric P, Drmic D (2017) Stable gastric pentadecapeptide BPC 157 antagonizes hydrogen peroxide induced oxidative stress in Drosophila melanogaster. FASEB J 31(1 Supplement):667.14–667.14

    Google Scholar 

  17. Garcia-Fruitos E (2012) Lactic acid Bacteria: a promising alternative for recombinant protein production. Microb Cell Factories 11:157. https://doi.org/10.1186/1475-2859-11-157

    CAS  Article  Google Scholar 

  18. Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514. https://doi.org/10.1038/nrgastro.2010.117

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW (2014) Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol 7:473–487. https://doi.org/10.2147/CEG.S27530

    Article  PubMed  PubMed Central  Google Scholar 

  20. Halasi M, Wang M, Chavan TS, Gaponenko V, Hay N, Gartel AL (2013) ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem J 454(2):201–208. https://doi.org/10.1042/BJ20130282

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55(12):3119–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang T, Zhang K, Sun L, Xue X, Zhang C, Shu Z, Mu N, Gu J, Zhang W, Wang Y, Zhang Y (2015) Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro. Drug Des Devel Ther 9:2485–2499. https://doi.org/10.2147/DDDT.S82030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Jarc E, Kump A, Malavasic P, Eichmann TO, Zimmermann R, Petan T (2017) Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress. Biochim Biophys Acta 1863(3):247–265. https://doi.org/10.1016/j.bbalip.2017.12.006

    CAS  Article  Google Scholar 

  24. Keremi B, Lohinai Z, Komora P, Duhaj S, Borsi K, Jobbagy-Ovari G, Kallo K, Szekely AD, Fazekas A, Dobo-Nagy C, Sikiric P, Varga G (2009) Antiinflammatory effect of BPC 157 on experimental periodontitis in rats. J Physiol Pharmacol 60(Suppl 7):115–122

    PubMed  Google Scholar 

  25. Klicek R, Sever M, Radic B, Drmic D, Kocman I, Zoricic I, Vuksic T, Ivica M, Barisic I, Ilic S, Berkopic L, Vrcic H, Brcic L, Blagaic AB, Coric M, Brcic I, Rokotov DS, Anic T, Seiwerth S, Sikiric P (2008) Pentadecapeptide BPC 157, in clinical trials as a therapy for inflammatory bowel disease (PL14736), is effective in the healing of colocutaneous fistulas in rats: role of the nitric oxide-system. J Pharmacol Sci 108(1):7–17. https://doi.org/10.1254/jphs.FP0072161

    CAS  Article  PubMed  Google Scholar 

  26. Kosler S, Strukelj B, Berlec A (2017) Lactic acid bacteria with concomitant IL-17, IL-23 and TNFalpha-binding ability for the treatment of inflammatory bowel disease. Curr Pharm Biotechnol 18(4):318–326. https://doi.org/10.2174/1389201018666170210152218

    CAS  Article  PubMed  Google Scholar 

  27. Le Loir Y, Gruss A, Ehrlich SD, Langella P (1998) A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180(7):1895–1903

    PubMed  PubMed Central  Google Scholar 

  28. Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P (2001) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67(9):4119–4127. https://doi.org/10.1128/AEM.67.9.4119-4127.2001

    Article  PubMed  PubMed Central  Google Scholar 

  29. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Factories 4(1):2. https://doi.org/10.1186/1475-2859-4-2

    CAS  Article  Google Scholar 

  30. Lindholm A, Smeds A, Palva A (2004) Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70(4):2061–2071. https://doi.org/10.1128/AEM.70.4.2061-2071.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Luetic K, Sucic M, Vlainic J, Halle ZB, Strinic D, Vidovic T, Luetic F, Marusic M, Gulic S, Pavelic TT, Kokot A, Seiwerth RS, Drmic D, Batelja L, Seiwerth S, Sikiric P (2017) Cyclophosphamide induced stomach and duodenal lesions as a NO-system disturbance in rats: L-NAME, L-arginine, stable gastric pentadecapeptide BPC 157. Inflammopharmacology 25(2):255–264. https://doi.org/10.1007/s10787-017-0330-7

    CAS  Article  PubMed  Google Scholar 

  32. Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM (2016) Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Factories 15:70. https://doi.org/10.1186/s12934-016-0468-9

    CAS  Article  Google Scholar 

  33. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717. https://doi.org/10.1007/s00253-005-0107-6

    CAS  Article  PubMed  Google Scholar 

  34. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167. https://doi.org/10.1089/ars.2012.5149

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterol 142(1):46–54. https://doi.org/10.1053/j.gastro.2011.10.001

    Article  Google Scholar 

  36. Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14(1–3):48–58. https://doi.org/10.1159/000106082

    CAS  Article  PubMed  Google Scholar 

  37. Ng DT, Sarkar CA (2011) Nisin-inducible secretion of a biologically active single-chain insulin analog by Lactococcus lactis NZ9000. Biotechnol Bioeng 108(8):1987–1996. https://doi.org/10.1002/bit.23130

    CAS  Article  PubMed  Google Scholar 

  38. Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79(2):165–175. https://doi.org/10.1016/j.pep.2011.06.005

    CAS  Article  PubMed  Google Scholar 

  39. Ravnikar M, Strukelj B, Obermajer N, Lunder M, Berlec A (2010) Engineered lactic acid bacterium Lactococcus lactis capable of binding antibodies and tumor necrosis factor alpha. Appl Environ Microbiol 76(20):6928–6932. https://doi.org/10.1128/AEM.00190-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Samazan F, Rokbi B, Seguin D, Telles F, Gautier V, Richarme G, Chevret D, Varela PF, Velours C, Poquet I (2015) Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Factories 14:104. https://doi.org/10.1186/s12934-015-0271-z

    CAS  Article  Google Scholar 

  41. Sandborn WJ (2008) Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterol 135(5):1442–1447. https://doi.org/10.1053/j.gastro.2008.09.053

    Article  Google Scholar 

  42. Sikiric P, Petek M, Rucman R, Seiwerth S, Grabarevic Z, Rotkvic I, Turkovic B, Jagic V, Mildner B, Duvnjak M, Lang N, Danilovic Z, Cviko A, Kolega M, Sallmani A, Djacic S, Bura M, Brkic T, Banic M, Dodig M, Coric V, Simicevic V, Veljaca M, Erceg D, Ježek D, Simunic-Banek L, Skroza N, Bulic K, Buljat G, Hanzevacki M, Orihovac V, Lucinger D, Culig J, Separovic J, Marovic A, Mise S, Suchanek E, Matoz W, Perovic D, Gjurasin M, Mikulandra S, Dernikovic K, Cuk V, Karakas I (1993) A new gastric juice peptide, BPC. An overview of the stomach-stress-organoprotection hypothesis and beneficial effects of BPC. J Physiol Paris 87(5):313–327. https://doi.org/10.1016/0928-4257(93)90038-U

    CAS  Article  PubMed  Google Scholar 

  43. Sikiric P, Seiwerth S, Deskovic S, Grabarevic Z, Marovic A, Rucman R, Petek M, Konjevoda P, Jadrijevic S, Sosa T, Perovic D, Aralica G, Turkovic B (1999) New model of cytoprotection/adaptive cytoprotection in rats: endogenous small irritants, antiulcer agents and indomethacin. Eur J Pharmacol 364(1):23–31. https://doi.org/10.1016/S0014-2999(98)00818-8

    CAS  Article  PubMed  Google Scholar 

  44. Sikiric P, Seiwerth S, Rucman R, Turkovic B, Rokotov DS, Brcic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolenc D, Stambolija V, Zoricic Z, Vrcic H, Sebecic B (2012) Focus on ulcerative colitis: stable gastric pentadecapeptide BPC 157. Curr Med Chem 19(1):126–132. https://doi.org/10.2174/092986712803414015

    CAS  Article  PubMed  Google Scholar 

  45. Sikiric P, Seiwerth S, Rucman R, Turkovic B, Rokotov DS, Brcic L, Sever M, Klicek R, Radic B, Drmic D, Ilic S, Kolenc D, Aralica G, Safic H, Suran J, Rak D, Dzidic S, Vrcic H, Sebecic B (2013) Toxicity by NSAIDs. Counteraction by stable gastric pentadecapeptide BPC 157. Curr Pharm Des 19(1):76–83. https://doi.org/10.2174/1381612811306010076

    CAS  Article  PubMed  Google Scholar 

  46. Sikiric P, Seiwerth S, Rucman R, Kolenc D, Vuletic LB, Drmic D, Grgic T, Strbe S, Zukanovic G, Crvenkovic D, Madzarac G, Rukavina I, Sucic M, Baric M, Starcevic N, Krstonijevic Z, Bencic ML, Filipcic I, Rokotov DS, Vlainic J (2016) Brain-gut axis and pentadecapeptide BPC 157: theoretical and practical implications. Curr Neuropharmacol 14(8):857–865. https://doi.org/10.2174/1570159X13666160502153022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Skrlec K, Pucer Janez A, Rogelj B, Strukelj B, Berlec A (2017) Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb Biotechnol 10(6):1732–1743. https://doi.org/10.1111/1751-7915.12781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Song AA, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Factories 16(1):55. https://doi.org/10.1186/s12934-017-0669-x

    CAS  Article  Google Scholar 

  49. Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278(26):23874–23881. https://doi.org/10.1074/jbc.M211055200

    CAS  Article  PubMed  Google Scholar 

  50. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355. https://doi.org/10.1126/science.289.5483.1352

    CAS  Article  PubMed  Google Scholar 

  51. Tian T, Wang Z, Zhang J (2017) Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative Med Cell Longev 2017:4535194–4535118. https://doi.org/10.1155/2017/4535194

    Article  Google Scholar 

  52. Triantafillidis JK, Merikas E, Georgopoulos F (2011) Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 5:185–210. https://doi.org/10.2147/DDDT.S11290

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Tuzun A, Erdil A, Inal V, Aydin A, Bagci S, Yesilova Z, Sayal A, Karaeren N, Dagalp K (2002) Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin Biochem 35(7):569–572. https://doi.org/10.1016/S0009-9120(02)00361-2

    CAS  Article  PubMed  Google Scholar 

  54. van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95(1):155–160. https://doi.org/10.1016/0378-1119(90)90428-T

    Article  PubMed  Google Scholar 

  55. Varma NR, Toosa H, Foo HL, Alitheen NB, Nor Shamsudin M, Arbab AS, Yusoff K, Abdul Rahim R (2013) Display of the viral epitopes on Lactococcus lactis: a model for food grade vaccine against EV71. Biotechnol Res Int 2013:431315. https://doi.org/10.1155/2013/431315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Visweswaran GR, Leenhouts K, van Roosmalen M, Kok J, Buist G (2014) Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications. Appl Microbiol Biotechnol 98(10):4331–4345. https://doi.org/10.1007/s00253-014-5633-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Vuksic T, Zoricic I, Brcic L, Sever M, Klicek R, Radic B, Cesarec V, Berkopic L, Keller N, Blagaic AB, Kokic N, Jelic I, Geber J, Anic T, Seiwerth S, Sikiric P (2007) Stable gastric pentadecapeptide BPC 157 in trials for inflammatory bowel disease (PL-10, PLD-116, PL14736, Pliva, Croatia) heals ileoileal anastomosis in the rat. Surg Today 37(9):768–777. https://doi.org/10.1007/s00595-006-3498-9

    CAS  Article  PubMed  Google Scholar 

  58. Wang Y, Wu Y, Xu H, Mei X, Yu D, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521. https://doi.org/10.3390/nu9050521

    CAS  Article  PubMed Central  Google Scholar 

  59. Watterlot L, Rochat T, Sokol H, Cherbuy C, Bouloufa I, Lefevre F, Gratadoux JJ, Honvo-Hueto E, Chilmonczyk S, Blugeon S, Corthier G, Langella P, Bermudez-Humaran LG (2010) Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol 144(1):35–41. https://doi.org/10.1016/j.ijfoodmicro.2010.03.037

    CAS  Article  PubMed  Google Scholar 

  60. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362. https://doi.org/10.1038/nrmicro1840

    CAS  Article  PubMed  Google Scholar 

  61. Zadravec P, Mavric A, Bogovic Matijasic B, Strukelj B, Berlec A (2014) Engineering BmpA as a carrier for surface display of IgG-binding domain on Lactococcus lactis. Protein Eng Des Sel 27(1):21–27. https://doi.org/10.1093/protein/gzt059

    CAS  Article  PubMed  Google Scholar 

  62. Zadravec P, Strukelj B, Berlec A (2015) Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species. Appl Environ Microbiol 81(6):2098–2106. https://doi.org/10.1128/AEM.03694-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Roger pain for critical reading of the manuscript.

Funding

This study was funded by the Slovenian Research Agency (grant number P4-0127).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleš Berlec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is dedicated in the memory of the late Dr. Rudolf Ručman who made important contributions to this work.

Electronic supplementary material

ESM 1

(PDF 514 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Škrlec, K., Ručman, R., Jarc, E. et al. Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities. Appl Microbiol Biotechnol 102, 10103–10117 (2018). https://doi.org/10.1007/s00253-018-9333-6

Download citation

Keywords

  • Lactococcus lactis
  • BPC-157
  • Recombinant
  • Peptide delivery
  • Antioxidant
  • Fibroblasts