Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9279–9289 | Cite as

The effects of disruption in membrane lipid biosynthetic genes on 1-butanol tolerance of Bacillus subtilis

  • Nawaporn VinayavekhinEmail author
  • Alisa S. Vangnai
Applied genetics and molecular biotechnology


Microbes with enhanced 1-butanol tolerance have the potentials to be utilized in various biotechnological processes. To achieve the rational design of such strains, we previously conducted an untargeted metabolomics analysis of Bacillus subtilis under 1-butanol stress and uncovered a novel type of microbial responses as the alterations in the glycerolipid and phospholipid composition. However, the current knowledge about the relevance of these changes on 1-butanol tolerance remains quite limited. Here, we constructed the B. subtilis mutants with disruption in the pssA, ugtP (U), mprF (M), yfnI, and yfnI/mprF genes in the membrane lipid biosynthetic pathways. The 1-butanol tolerance test indicated markedly increased and decreased 1-butanol resistance in M and U compared to the wild-type strain, respectively, and slight effects in other strains under high stress level. Further examination of the lipid contents of these strains in the presence of 1-butanol by liquid chromatography–mass spectrometry demonstrated an elevated ratio of neutral and anionic to cationic lipids in direct relation with an improved 1-butanol tolerance. Last, cell morphological studies showed the shortening of only the U cells, compared to the wild-type. All strains including U were capable of elongating by 14–24% under 1-butanol stress. Together, the studies indicated the involvement of membrane lipid biosynthetic genes, which regulated glycerolipid and phospholipid composition, on 1-butanol tolerance and allowed for the procurement of M with enhanced 1-butanol tolerance trait, highlighting the usefulness of the overall approaches on discovery of novel biological insights and engineering of microorganisms with desired resistance characteristics.


Bacillus subtilis 1-butanol tolerance Glycerolipids Phospholipids Membrane lipids Liquid chromatography–mass spectrometry 



We thank Dr. Andrew King (Department of Chemistry, Faculty of Science, Chulalongkorn University) for editorial help in preparing this manuscript, and Pensuphat Thongkachok for her initial help with the project.


This research was supported by the Asahi Glass Foundation, the Office of the Higher Education Commission, and the Thailand Research Fund (MRG6180002). The opinions expressed in this paper are the sole responsibility of the authors and do not necessarily reflect those of the funding agencies or Chulalongkorn University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63(9):3637–3642PubMedPubMedCentralGoogle Scholar
  2. Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180(4):938–944PubMedPubMedCentralGoogle Scholar
  3. Bohin JP, Rigomier D, Schaeffer P (1976) Ethanol sensitivity of sporulation in Bacillus subtilis: a new tool for the analysis of the sporulation process. J Bacteriol 127(2):934–940PubMedPubMedCentralGoogle Scholar
  4. Bustard MT, Whiting S, Cowan DA, Wright PC (2002) Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus. Extremophiles 6(4):319–323. CrossRefPubMedGoogle Scholar
  5. Chauvel A, Lefebvre G (1989) Petrochemical processes: technical and economic characteristics (trans: Marshall N), Technip edn. Imprimerie Nouvelle, FranceGoogle Scholar
  6. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20(3):307–315. CrossRefPubMedGoogle Scholar
  7. Durre P (2011) Fermentative production of butanol—the academic perspective. Curr Opin Biotechnol 22(3):331–336. CrossRefPubMedGoogle Scholar
  8. Eiamphungporn W, Helmann JD (2008) The Bacillus subtilis sigma (M) regulon and its contribution to cell envelope stress responses. Mol Microbiol 67(4):830–848. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10(6):295–304. CrossRefPubMedGoogle Scholar
  10. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381. CrossRefPubMedGoogle Scholar
  11. Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22(3):337–343. CrossRefPubMedGoogle Scholar
  12. Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K (2000) Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146(Pt 1):65–75. CrossRefPubMedGoogle Scholar
  13. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125(2):670–678PubMedPubMedCentralGoogle Scholar
  14. Ishiwa H, Shibahara H (1985) New shuttle vectors for Escherichia coli and Bacillus subtilis. II. Plasmid pHY300PLK, a multipurpose cloning vector with a polylinker, derived from pHY460. Jpn J Genet 60:235–243. CrossRefGoogle Scholar
  15. Jervis AJ, Thackray PD, Houston CW, Horsburgh MJ, Moir A (2007) SigM-responsive genes of Bacillus subtilis and their promoters. J Bacteriol 189(12):4534–4538. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524PubMedPubMedCentralGoogle Scholar
  17. Kang HJ, Heo DH, Choi SW, Kim KN, Shim J, Kim CW, Sung HC, Yun CW (2007) Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochem Biophys Res Commun 358(3):743–750. CrossRefPubMedGoogle Scholar
  18. Kataoka N, Tajima T, Kato J, Rachadech W, Vangnai AS (2011) Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host. AMB Express 1:Artn 10. CrossRefGoogle Scholar
  19. Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177(9):2403–2407CrossRefGoogle Scholar
  20. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O'Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256CrossRefGoogle Scholar
  21. Lin YL, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45(3):966–973PubMedPubMedCentralGoogle Scholar
  22. Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. New Biotechnol 26(3–4):117–121. CrossRefGoogle Scholar
  23. Lopez CS, Alice AF, Heras H, Rivas EA, Sanchez-Rivas C (2006) Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152(Pt 3):605–616. CrossRefPubMedGoogle Scholar
  24. Mahipant G, Paemanee A, Roytrakul S, Kato J, Vangnai AS (2017) The significance of proline and glutamate on butanol chaotropic stress in Bacillus subtilis 168. Biotechnol Biofuels 10:122. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Neumann G, Veeranagouda Y, Karegoudar TB, Sahin O, Mausezahl I, Kabelitz N, Kappelmeyer U, Heipieper HJ (2005) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9(2):163–168. CrossRefPubMedGoogle Scholar
  26. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423. CrossRefPubMedGoogle Scholar
  27. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331. CrossRefPubMedGoogle Scholar
  28. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11(4–5):262–273. CrossRefPubMedGoogle Scholar
  29. Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183(19):5617–5631. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Salzberg LI, Helmann JD (2008) Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 190(23):7797–7807. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Schirner K, Marles-Wright J, Lewis RJ, Errington J (2009) Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28(7):830–842. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787. CrossRefPubMedGoogle Scholar
  33. Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29(4):442–452. CrossRefPubMedGoogle Scholar
  34. Venkataramanan KP, Min L, Hou S, Jones SW, Ralston MT, Lee KH, Papoutsakis ET (2015) Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum. Biotechnol Biofuels 8:81. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vinayavekhin N, Mahipant G, Vangnai AS, Sangvanich P (2015) Untargeted metabolomics analysis revealed changes in the composition of glycerolipids and phospholipids in Bacillus subtilis under 1-butanol stress. Appl Microbiol Biotechnol 99(14):5971–5983. CrossRefPubMedGoogle Scholar
  36. Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286(3):225–245CrossRefGoogle Scholar
  37. Zingaro KA, Papoutsakis ET (2012) Toward a semisynthetic stress response system to engineer microbial solvent tolerance. mBio 3(5).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Biocatalyst and Environmental Biotechnology Research Unit, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Center of Excellence on Hazardous Substance Management (HSM)Chulalongkorn UniversityBangkokThailand

Personalised recommendations