Abstract
Membrane biofilm reactors (MBfRs) deliver gaseous substrates to biofilms that develop on the outside of gas-transfer membranes. When an MBfR delivers electron donors hydrogen (H2) or methane (CH4), a wide range of oxidized contaminants can be reduced as electron acceptors, e.g., nitrate, perchlorate, selenate, and trichloroethene. When O2 is delivered as an electron acceptor, reduced contaminants can be oxidized, e.g., benzene, toluene, and surfactants. The MBfR’s biofilm often harbors a complex microbial community; failure to control the growth of undesirable microorganisms can result in poor performance. Fortunately, the community’s structure and function can be managed using a set of design and operation features as follows: gas pressure, membrane type, and surface loadings. Proper selection of these features ensures that the best microbial community is selected and sustained. Successful design and operation of an MBfR depends on a holistic understanding of the microbial community’s structure and function. This involves integrating performance data with omics results, such as with stoichiometric and kinetic modeling.
This is a preview of subscription content, access via your institution.



References
Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Loffler FE (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ Sci Technol 42(15):5718–5726
Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187
Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91
Cabezas A, de Araujo JC, Callejas C, Galès A, Hamelin J, Marone A, Sousa DZ, Trably E, Etchebehere C (2015) How to use molecular biology tools for the study of the anaerobic digestion process? Rev Environ Sci Biotechnol 14(4):555–593
Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42(18):6791–6799
Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Biosci Bioeng 89:489–491
Cheung K, Gu J-D (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. W J Microbiol Biotechnol 21(3):213–219
Chung J, Nerenberg R, Rittmann BE (2006a) Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 40(5):1664–1671
Chung J, Ryu HD, Abbaszadegan M, Rittmann BE (2006b) Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate. Appl Microbiol Biotechnol 72(6):1330–1339. https://doi.org/10.1007/S00253-006-0439-X
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Sci 284(5418):1318–1322
Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867
Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF III, Done HY, Popat SC, Krajmalnik-Brown R (2014) Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS One 9(6):e100654
Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R (2012) Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Factories 11(1):128
Deo RP, Songkasiri W, Rittmann BE, Reed DT (2010) Surface complexation of neptunium (V) onto whole cells and cell components of Shewanella alga: modeling and experimental study. Environ Sci Technol 44(13):4930–4935
Downing LS, Nerenberg R (2008a) Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Biotechnol Bioeng 101(6):1193–1204
Downing LS, Nerenberg R (2008b) Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Res 42(14):3697–3708
Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125(1):100–128
Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41(7):2303–2310. https://doi.org/10.1021/es062010r
Eberl HJ, Morgenroth E, Noguera D, Picioreanu C, Rittmann BE, van Loosdrecht MCM, Wanner O (2006) Mathematical Modeling of Biofilms, IWA Scientific and Technical Report No.18; IWA Publishers, London
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, De Beer D (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nat 464(7288):543
Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Nat Acad Sci 113(45):12792–12796
Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614
Flemming H-C (2011) The perfect slime. Colloid Surf B: Biointerfaces 86(2):251–259
Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66(2):543–548
Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140
Gilmore KR, Terada A, Smets BF, Love NG, Garland JL (2013) Autotrophic nitrogen removal in a membrane-aerated biofilm reactor under continuous aeration: a demonstration. Environ Eng Sci 30(1):38–45
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567
He JZ, Holmes VF, PKH L, Alvarez-Cohen L (2007) Influence of vitamin B-12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853
He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65
He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Loffler FE (2005) Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450
Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401
Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398
Johnson DR, Nemir A, Andersen GL, Zinder SH, Alvarez-Cohen L (2009) Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol Lett 294(2):198–206. https://doi.org/10.1111/j.1574-6968.2009.01569.x
Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhart R, Kahnt J, Böcher R, Thauer RK (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426(6968):878
Lai YS, Ontiveros-Valencia A, Ilhan ZE, Zhou Y, Miranda E, Maldonado J, Krajmalnik-Brown R, Rittmann BE (2017) Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor. Water Res 123:825–833
Lai C-Y, Wen L-L, Shi L-D, Zhao K-K, Wang Y-Q, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P (2016c) Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 50(18):10179–10186
Lai C-Y, Wen L-L, Zhang Y, Luo S-S, Wang Q-Y, Luo Y-H, Chen R, Yang X, Rittmann BE, Zhao H-P (2016b) Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Res 88:467–474
Lai C-Y, Yang X, Tang Y, Rittmann BE, Zhao H-P (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48(6):3395–3402
Lai C-Y, Zhong L, Zhang Y, Chen J-X, Wen L-L, Shi L-D, Sun Y-P, Ma F, Rittmann BE, Zhou C (2016a) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50(11):5832–5839
Laspidou CS, Rittmann BE (2004a) Evaluating trends in biofilm density using the UMCCA model. Water Res 38(14–15):3362–3372
Laspidou CS, Rittmann BE (2004b) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res 38(14–15):3349–3361
Li A, Zhou C, Liu Z, Xu X, Zhou Y, Zhou D, Tang Y, Ma F, Rittmann BE (2018) Direct solid-state evidence of H2-induced partial U (VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnol Bioeng 115(7):1685–1693
Liu Z, Zhou C, Ontiveros-Valencia A, Luo YH, Long M, Xu H, Rittman BE (2018) Accurate O2 delivery enabled benzene biodegradation through aerobic activation followed by denitrification-coupled mineralization. Biotechnol Bioeng (accepted). https://doi.org/10.1002/bit.26712
Löffler FE, Ritalahti KM, Tiedje JM (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl Environ Microbiol 63:4982–4985
Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE (2018) Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Wat Res 144:134–144
Long M, Zhou C, Xia S, Guadiea A (2017) Concomitant Cr (VI) reduction and Cr (III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chem Eng J 315:58–66
Luo Y-H, Chen R, Wen L-L, Meng F, Zhang Y, Lai C-Y, Rittmann BE, Zhao H-P, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49(4):2341–2349
Lv P-L, Zhong L, Dong Q-Y, Yang S-L, Shen W-W, Zhu Q-S, Lai C-Y, Luo A-C, Tang Y, Zhao H-P (2018) The effect of electron competition on chromate reduction using methane as electron donor. Environ Sci Pollut Res 25(7):6609–6618
Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94
Martin KJ, Picioreanu C, Nerenberg R (2015) Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling. Biotechnol Bioeng 112(9):1843–1853
Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37(1):98–107
Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571
Maymo-Gatell X, Tandoi V, Gossett JM, Zinder SH (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl-chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61(11):3928–3933
Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519
Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541
Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41(12):2726–2738
Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10(1):162–173
Nerenberg R, Kawagoshi Y, Rittmann BE (2006) Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Water Res 40(17):3290–3296
Nguyen BT, Rittmann BE (2016) Effects of inorganic carbon and pH on growth kinetics of Synechocystis sp. PCC 6803. Algal Res 19:363–369
Ontiveros-Valencia A, Ilhan ZE, Kang DW, Rittmann B, Krajmalnik-Brown R (2013a) Phylogenetic analysis of nitrate-and sulfate-reducing bacteria in a hydrogen-fed biofilm. FEMS Microbiol Ecol 85(1):158–167
Ontiveros-Valencia A, Penton CR, Krajmalnik-Brown R, Rittmann BE (2016) Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm. Biotechnol Bioeng 113(8):1736–1744
Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2013b) Perchlorate reduction from a highly contaminated groundwater in the presence of sulfate-reducing bacteria in a hydrogen-fed biofilm. Biotechnol Bioeng 110(12):3139–3147
Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2014a) Managing the interactions between sulfate-and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. Water Res 55:215–224
Ontiveros-Valencia A, Tang Y, Zhao H-P, Friese D, Overstreet R, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R (2014b) Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environ Sci Technol 48(13):7511–7518
Ontiveros-Valencia A, Zhou C, Ilhan ZE, de Saint Cyr LC, Krajmalnik-Brown R, Rittmann BE (2017) Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. Water Res 125:341–349
Ontiveros-Valencia A, Ziv-El M, Zhao H-P, Feng L, Rittmann BE, Krajmalnik-Brown R (2012) Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm. Environ Sci Technol 46(20):11289–11298
Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60(2):740–745
Pellicer-Nàcher C, Franck S, Gülay A, Ruscalleda M, Terada A, Al-Soud WA, Hansen MA, Sørensen SJ, Smets BF (2014) Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics. Microb Biotechnol 7(1):32–43
Rittmann BE (2018) Biofilms, Active substrata, and me. Wat Res 132:135–145
Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604
Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Eng Life Sci 1(1):57–65
Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56
Shanahan JW, Semmens MJ (2004) Multipopulation model of membrane-aerated biofilms. Environ Sci Technol 38(11):3176–3183
Smidt H, ADL A, van der Oost J, de Vos WM (2000) Halorespiring bacteria-molecular characterization and detection. Enzym Microb Technol 27:812–820
Syron E, Casey E (2008) Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ Sci Technol 42(6):1833–1844
Tang Y, Ontiveros-Valencia A, Feng L, Zhou C, Krajmalnik-Brown R, Rittmann BE (2013) A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnol Bioeng 110(3):763–772
Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012c) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution. Environ Sci Technol 46(3):1598–1607
Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012b) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion. Environ Sci Technol 46(3):1608–1615
Tang Y, Zhou C, Van Ginkel SW, Ontiveros-Valencia A, Shin J, Rittmann BE (2012a) Hydrogen permeability of the hollow fibers used in H 2-based membrane biofilm reactors. J Membr Sci 407:176–183
Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A (2003) Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J Biosci Bioeng 95(2):170–178
Van Ginkel SW, Yang Z, Kim B-O, Sholin M, Rittmann BE (2011) The removal of selenate to low ppb levels from flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Bioresour Technol 102(10):6360–6364
Wang P-C, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55(7):1665–1669
Wang R, Zhan X, Zhang Y, Zhao J (2011) Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater. Front Environ Sci Eng China 5(1):48–56
Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511
Wolfaardt GM, Lawrence JR, Korber DR (1999) Function of EPS. In Microbial extracellular polymeric substances. Springer, Berlin, pp 171–200
Zemskaya TI, Pogodaeva TV, Shubenkova OV, Сhernitsina SM, Dagurova OP, Buryukhaev SP, Namsaraev BB, Khlystov OM, Egorov AV, Krylov AA (2010) Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo-Mar Lett 30(3–4):411–425
Zhang Y, Maignien L, Zhao X, Wang F, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11(1):137
Zhao H-P, Ilhan ZE, Ontiveros-Valencia A, Tang Y, Rittmann BE, Krajmalnik-Brown R (2013b) Effects of multiple electron acceptors on microbial interactions in a hydrogen-based biofilm. Environ Sci Technol 47(13):7396–7403
Zhao H-P, Ontiveros-Valencia A, Tang Y, Kim BO, Ilhan ZE, Krajmalnik-Brown R, Rittmann B (2013a) Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ Sci Technol 47(3):1565–1572
Zhao H-P, Van Ginkel S, Tang Y, Kang D-W, Rittmann B, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45(23):10155–10162
Zhong L, Lai C-Y, Shi L-D, Wang K-D, Dai Y-J, Liu Y-W, Ma F, Rittmann BE, Zheng P, Zhao H-P (2017) Nitrate effects on chromate reduction in a methane-based biofilm. Water Res 115:130–137
Zhou C, Ontiveros-Valencia A, de Saint Cyr LC, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014a) Uranium removal and microbial community in a H 2-based membrane biofilm reactor. Water Res 64:255–264
Zhou C, Vannela R, Hyun SP, Hayes KF, Rittmann BE (2014b) Growth of Desulfovibrio vulgaris when respiring U (VI) and characterization of biogenic uraninite. Environ Sci Technol 48(12):6928–6937
Zhou C, Wang Z, Ontiveros-Valencia A, Long M, Lai C-Y, Zhao H-P, Xia S, Rittmann BE (2017) Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Appl Catal B Environ 206:461–470
Zhuang W-Q, Yi S, Bill M, Brisson VL, Feng X, Men Y, Conrad ME, Tang YJ, Alvarez-Cohen L (2014) Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc Natl Acad Sci 111(17):6419–6424
Ziv-El M, Popat SC, Cai K, Halden RU, Krajmalnik-Brown R, Rittmann BE (2012) Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor. Biotechnol Bioeng 109(9):2200–2210
Ziv-El MC, Rittmann BE (2009) Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res 43(1):173–181
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical statement
The authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Ontiveros-Valencia, A., Zhou, C., Zhao, HP. et al. Managing microbial communities in membrane biofilm reactors. Appl Microbiol Biotechnol 102, 9003–9014 (2018). https://doi.org/10.1007/s00253-018-9293-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-018-9293-x
Keywords
- Membrane biofilm reactors
- Microbial community
- Biofilm
- Gaseous substrates