Skip to main content

Managing microbial communities in membrane biofilm reactors

Abstract

Membrane biofilm reactors (MBfRs) deliver gaseous substrates to biofilms that develop on the outside of gas-transfer membranes. When an MBfR delivers electron donors hydrogen (H2) or methane (CH4), a wide range of oxidized contaminants can be reduced as electron acceptors, e.g., nitrate, perchlorate, selenate, and trichloroethene. When O2 is delivered as an electron acceptor, reduced contaminants can be oxidized, e.g., benzene, toluene, and surfactants. The MBfR’s biofilm often harbors a complex microbial community; failure to control the growth of undesirable microorganisms can result in poor performance. Fortunately, the community’s structure and function can be managed using a set of design and operation features as follows: gas pressure, membrane type, and surface loadings. Proper selection of these features ensures that the best microbial community is selected and sustained. Successful design and operation of an MBfR depends on a holistic understanding of the microbial community’s structure and function. This involves integrating performance data with omics results, such as with stoichiometric and kinetic modeling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Loffler FE (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ Sci Technol 42(15):5718–5726

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187

    Article  CAS  Google Scholar 

  • Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91

    Article  Google Scholar 

  • Cabezas A, de Araujo JC, Callejas C, Galès A, Hamelin J, Marone A, Sousa DZ, Trably E, Etchebehere C (2015) How to use molecular biology tools for the study of the anaerobic digestion process? Rev Environ Sci Biotechnol 14(4):555–593

    Article  Google Scholar 

  • Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42(18):6791–6799

    Article  CAS  Google Scholar 

  • Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Biosci Bioeng 89:489–491

    Article  CAS  Google Scholar 

  • Cheung K, Gu J-D (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. W J Microbiol Biotechnol 21(3):213–219

    Article  CAS  Google Scholar 

  • Chung J, Nerenberg R, Rittmann BE (2006a) Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 40(5):1664–1671

    Article  CAS  Google Scholar 

  • Chung J, Ryu HD, Abbaszadegan M, Rittmann BE (2006b) Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate. Appl Microbiol Biotechnol 72(6):1330–1339. https://doi.org/10.1007/S00253-006-0439-X

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Sci 284(5418):1318–1322

    Article  CAS  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  CAS  Google Scholar 

  • Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF III, Done HY, Popat SC, Krajmalnik-Brown R (2014) Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS One 9(6):e100654

    Article  Google Scholar 

  • Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R (2012) Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Factories 11(1):128

    Article  CAS  Google Scholar 

  • Deo RP, Songkasiri W, Rittmann BE, Reed DT (2010) Surface complexation of neptunium (V) onto whole cells and cell components of Shewanella alga: modeling and experimental study. Environ Sci Technol 44(13):4930–4935

    Article  CAS  Google Scholar 

  • Downing LS, Nerenberg R (2008a) Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Biotechnol Bioeng 101(6):1193–1204

    Article  CAS  Google Scholar 

  • Downing LS, Nerenberg R (2008b) Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Res 42(14):3697–3708

    Article  CAS  Google Scholar 

  • Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125(1):100–128

    Article  CAS  Google Scholar 

  • Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41(7):2303–2310. https://doi.org/10.1021/es062010r

    Article  CAS  PubMed  Google Scholar 

  • Eberl HJ, Morgenroth E, Noguera D, Picioreanu C, Rittmann BE, van Loosdrecht MCM, Wanner O (2006) Mathematical Modeling of Biofilms, IWA Scientific and Technical Report No.18; IWA Publishers, London

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, De Beer D (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nat 464(7288):543

    Article  CAS  Google Scholar 

  • Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Nat Acad Sci 113(45):12792–12796

    Article  CAS  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614

    Article  CAS  Google Scholar 

  • Flemming H-C (2011) The perfect slime. Colloid Surf B: Biointerfaces 86(2):251–259

    Article  CAS  Google Scholar 

  • Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66(2):543–548

    Article  CAS  Google Scholar 

  • Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140

    Article  CAS  Google Scholar 

  • Gilmore KR, Terada A, Smets BF, Love NG, Garland JL (2013) Autotrophic nitrogen removal in a membrane-aerated biofilm reactor under continuous aeration: a demonstration. Environ Eng Sci 30(1):38–45

    Article  CAS  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567

    Article  CAS  Google Scholar 

  • He JZ, Holmes VF, PKH L, Alvarez-Cohen L (2007) Influence of vitamin B-12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  CAS  Google Scholar 

  • He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Loffler FE (2005) Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450

    Article  CAS  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401

    Article  CAS  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    Article  CAS  Google Scholar 

  • Johnson DR, Nemir A, Andersen GL, Zinder SH, Alvarez-Cohen L (2009) Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol Lett 294(2):198–206. https://doi.org/10.1111/j.1574-6968.2009.01569.x

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhart R, Kahnt J, Böcher R, Thauer RK (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426(6968):878

    Article  Google Scholar 

  • Lai YS, Ontiveros-Valencia A, Ilhan ZE, Zhou Y, Miranda E, Maldonado J, Krajmalnik-Brown R, Rittmann BE (2017) Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor. Water Res 123:825–833

    Article  CAS  Google Scholar 

  • Lai C-Y, Wen L-L, Shi L-D, Zhao K-K, Wang Y-Q, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P (2016c) Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 50(18):10179–10186

    Article  CAS  Google Scholar 

  • Lai C-Y, Wen L-L, Zhang Y, Luo S-S, Wang Q-Y, Luo Y-H, Chen R, Yang X, Rittmann BE, Zhao H-P (2016b) Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Res 88:467–474

    Article  CAS  Google Scholar 

  • Lai C-Y, Yang X, Tang Y, Rittmann BE, Zhao H-P (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48(6):3395–3402

    Article  CAS  Google Scholar 

  • Lai C-Y, Zhong L, Zhang Y, Chen J-X, Wen L-L, Shi L-D, Sun Y-P, Ma F, Rittmann BE, Zhou C (2016a) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50(11):5832–5839

    Article  CAS  Google Scholar 

  • Laspidou CS, Rittmann BE (2004a) Evaluating trends in biofilm density using the UMCCA model. Water Res 38(14–15):3362–3372

    Article  CAS  Google Scholar 

  • Laspidou CS, Rittmann BE (2004b) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res 38(14–15):3349–3361

    Article  CAS  Google Scholar 

  • Li A, Zhou C, Liu Z, Xu X, Zhou Y, Zhou D, Tang Y, Ma F, Rittmann BE (2018) Direct solid-state evidence of H2-induced partial U (VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnol Bioeng 115(7):1685–1693

    Article  CAS  Google Scholar 

  • Liu Z, Zhou C, Ontiveros-Valencia A, Luo YH, Long M, Xu H, Rittman BE (2018) Accurate O2 delivery enabled benzene biodegradation through aerobic activation followed by denitrification-coupled mineralization. Biotechnol Bioeng (accepted). https://doi.org/10.1002/bit.26712

    Article  CAS  Google Scholar 

  • Löffler FE, Ritalahti KM, Tiedje JM (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl Environ Microbiol 63:4982–4985

    PubMed  PubMed Central  Google Scholar 

  • Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE (2018) Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Wat Res 144:134–144

    Article  CAS  Google Scholar 

  • Long M, Zhou C, Xia S, Guadiea A (2017) Concomitant Cr (VI) reduction and Cr (III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chem Eng J 315:58–66

    Article  CAS  Google Scholar 

  • Luo Y-H, Chen R, Wen L-L, Meng F, Zhang Y, Lai C-Y, Rittmann BE, Zhao H-P, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49(4):2341–2349

    Article  CAS  Google Scholar 

  • Lv P-L, Zhong L, Dong Q-Y, Yang S-L, Shen W-W, Zhu Q-S, Lai C-Y, Luo A-C, Tang Y, Zhao H-P (2018) The effect of electron competition on chromate reduction using methane as electron donor. Environ Sci Pollut Res 25(7):6609–6618

    Article  CAS  Google Scholar 

  • Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94

    Article  CAS  Google Scholar 

  • Martin KJ, Picioreanu C, Nerenberg R (2015) Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling. Biotechnol Bioeng 112(9):1843–1853

    Article  CAS  Google Scholar 

  • Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37(1):98–107

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    Article  Google Scholar 

  • Maymo-Gatell X, Tandoi V, Gossett JM, Zinder SH (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl-chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61(11):3928–3933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519

    Article  CAS  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41(12):2726–2738

    Article  CAS  Google Scholar 

  • Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10(1):162–173

    CAS  PubMed  Google Scholar 

  • Nerenberg R, Kawagoshi Y, Rittmann BE (2006) Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Water Res 40(17):3290–3296

    Article  CAS  Google Scholar 

  • Nguyen BT, Rittmann BE (2016) Effects of inorganic carbon and pH on growth kinetics of Synechocystis sp. PCC 6803. Algal Res 19:363–369

    Article  Google Scholar 

  • Ontiveros-Valencia A, Ilhan ZE, Kang DW, Rittmann B, Krajmalnik-Brown R (2013a) Phylogenetic analysis of nitrate-and sulfate-reducing bacteria in a hydrogen-fed biofilm. FEMS Microbiol Ecol 85(1):158–167

    Article  Google Scholar 

  • Ontiveros-Valencia A, Penton CR, Krajmalnik-Brown R, Rittmann BE (2016) Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm. Biotechnol Bioeng 113(8):1736–1744

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2013b) Perchlorate reduction from a highly contaminated groundwater in the presence of sulfate-reducing bacteria in a hydrogen-fed biofilm. Biotechnol Bioeng 110(12):3139–3147

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2014a) Managing the interactions between sulfate-and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. Water Res 55:215–224

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Tang Y, Zhao H-P, Friese D, Overstreet R, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R (2014b) Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environ Sci Technol 48(13):7511–7518

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Zhou C, Ilhan ZE, de Saint Cyr LC, Krajmalnik-Brown R, Rittmann BE (2017) Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. Water Res 125:341–349

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Ziv-El M, Zhao H-P, Feng L, Rittmann BE, Krajmalnik-Brown R (2012) Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm. Environ Sci Technol 46(20):11289–11298

    Article  CAS  Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60(2):740–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellicer-Nàcher C, Franck S, Gülay A, Ruscalleda M, Terada A, Al-Soud WA, Hansen MA, Sørensen SJ, Smets BF (2014) Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics. Microb Biotechnol 7(1):32–43

    Article  Google Scholar 

  • Rittmann BE (2018) Biofilms, Active substrata, and me. Wat Res 132:135–145

    Article  CAS  Google Scholar 

  • Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604

    Article  CAS  Google Scholar 

  • Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Eng Life Sci 1(1):57–65

    Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56

    Article  CAS  Google Scholar 

  • Shanahan JW, Semmens MJ (2004) Multipopulation model of membrane-aerated biofilms. Environ Sci Technol 38(11):3176–3183

    Article  CAS  Google Scholar 

  • Smidt H, ADL A, van der Oost J, de Vos WM (2000) Halorespiring bacteria-molecular characterization and detection. Enzym Microb Technol 27:812–820

    Article  CAS  Google Scholar 

  • Syron E, Casey E (2008) Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ Sci Technol 42(6):1833–1844

    Article  CAS  Google Scholar 

  • Tang Y, Ontiveros-Valencia A, Feng L, Zhou C, Krajmalnik-Brown R, Rittmann BE (2013) A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnol Bioeng 110(3):763–772

    Article  CAS  Google Scholar 

  • Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012c) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution. Environ Sci Technol 46(3):1598–1607

    Article  CAS  Google Scholar 

  • Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012b) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion. Environ Sci Technol 46(3):1608–1615

    Article  CAS  Google Scholar 

  • Tang Y, Zhou C, Van Ginkel SW, Ontiveros-Valencia A, Shin J, Rittmann BE (2012a) Hydrogen permeability of the hollow fibers used in H 2-based membrane biofilm reactors. J Membr Sci 407:176–183

    Article  Google Scholar 

  • Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A (2003) Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J Biosci Bioeng 95(2):170–178

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Yang Z, Kim B-O, Sholin M, Rittmann BE (2011) The removal of selenate to low ppb levels from flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Bioresour Technol 102(10):6360–6364

    Article  Google Scholar 

  • Wang P-C, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55(7):1665–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhan X, Zhang Y, Zhao J (2011) Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater. Front Environ Sci Eng China 5(1):48–56

    Article  Google Scholar 

  • Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511

    Article  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Korber DR (1999) Function of EPS. In Microbial extracellular polymeric substances. Springer, Berlin, pp 171–200

    Chapter  Google Scholar 

  • Zemskaya TI, Pogodaeva TV, Shubenkova OV, Сhernitsina SM, Dagurova OP, Buryukhaev SP, Namsaraev BB, Khlystov OM, Egorov AV, Krylov AA (2010) Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo-Mar Lett 30(3–4):411–425

    Article  CAS  Google Scholar 

  • Zhang Y, Maignien L, Zhao X, Wang F, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11(1):137

    Article  CAS  Google Scholar 

  • Zhao H-P, Ilhan ZE, Ontiveros-Valencia A, Tang Y, Rittmann BE, Krajmalnik-Brown R (2013b) Effects of multiple electron acceptors on microbial interactions in a hydrogen-based biofilm. Environ Sci Technol 47(13):7396–7403

    Article  CAS  Google Scholar 

  • Zhao H-P, Ontiveros-Valencia A, Tang Y, Kim BO, Ilhan ZE, Krajmalnik-Brown R, Rittmann B (2013a) Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ Sci Technol 47(3):1565–1572

    Article  CAS  Google Scholar 

  • Zhao H-P, Van Ginkel S, Tang Y, Kang D-W, Rittmann B, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45(23):10155–10162

    Article  CAS  Google Scholar 

  • Zhong L, Lai C-Y, Shi L-D, Wang K-D, Dai Y-J, Liu Y-W, Ma F, Rittmann BE, Zheng P, Zhao H-P (2017) Nitrate effects on chromate reduction in a methane-based biofilm. Water Res 115:130–137

    Article  CAS  Google Scholar 

  • Zhou C, Ontiveros-Valencia A, de Saint Cyr LC, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014a) Uranium removal and microbial community in a H 2-based membrane biofilm reactor. Water Res 64:255–264

    Article  CAS  Google Scholar 

  • Zhou C, Vannela R, Hyun SP, Hayes KF, Rittmann BE (2014b) Growth of Desulfovibrio vulgaris when respiring U (VI) and characterization of biogenic uraninite. Environ Sci Technol 48(12):6928–6937

    Article  CAS  Google Scholar 

  • Zhou C, Wang Z, Ontiveros-Valencia A, Long M, Lai C-Y, Zhao H-P, Xia S, Rittmann BE (2017) Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Appl Catal B Environ 206:461–470

    Article  CAS  Google Scholar 

  • Zhuang W-Q, Yi S, Bill M, Brisson VL, Feng X, Men Y, Conrad ME, Tang YJ, Alvarez-Cohen L (2014) Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc Natl Acad Sci 111(17):6419–6424

    Article  CAS  Google Scholar 

  • Ziv-El M, Popat SC, Cai K, Halden RU, Krajmalnik-Brown R, Rittmann BE (2012) Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor. Biotechnol Bioeng 109(9):2200–2210

    Article  CAS  Google Scholar 

  • Ziv-El MC, Rittmann BE (2009) Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res 43(1):173–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ontiveros-Valencia.

Ethics declarations

Ethical statement

The authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ontiveros-Valencia, A., Zhou, C., Zhao, HP. et al. Managing microbial communities in membrane biofilm reactors. Appl Microbiol Biotechnol 102, 9003–9014 (2018). https://doi.org/10.1007/s00253-018-9293-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9293-x

Keywords

  • Membrane biofilm reactors
  • Microbial community
  • Biofilm
  • Gaseous substrates