Skip to main content
Log in

Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349

    Article  CAS  Google Scholar 

  • Ask M, Bettiga M, Duraiswamy VR, Olsson L (2013a) Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnology for Biofuels 6(1):181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ask M, Bettiga M, Mapelli V, Olsson L (2013b) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnology for Biofuels 6(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becuwe M, Léon S (2014) Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. Elife 3:e03307

    Article  PubMed Central  Google Scholar 

  • Cavka A, Stagge S, Jönsson LJ (2015) Identification of small aliphatic aldehydes in pretreated lignocellulosic feedstocks and evaluation of their inhibitory effects on yeast. J Agric Food Chem 63(44):9747–9754

    Article  PubMed  CAS  Google Scholar 

  • Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14(4):366–379

    Article  PubMed  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421

    Article  CAS  Google Scholar 

  • Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    Article  CAS  Google Scholar 

  • Delgenes J, Moletta R, Navarro J (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzym Microb Technol 19(3):220–225

    Article  CAS  Google Scholar 

  • Dolz-Edo L, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M (2013) Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Mol Cell Biol 33(11):2228–2240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Santos Cordeiro Perna M, Bastos RG, Ceccato-Antonini SR (2018) Single and combined effects of acetic acid, furfural, and sugars on the growth of the pentose-fermenting yeast Meyerozyma guilliermondii. 3 Biotech 8(2):119

    Article  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA (1999) Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15(10a):879–892

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270(17):10017–10026

    Article  PubMed  CAS  Google Scholar 

  • Guo P-C, Bao Z-Z, Ma X-X, Xia Q, Li W-F (2014) Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2. Biochim Biophys Acta (BBA) - Proteins Proteomics 1844(9):1486–1492

    Article  CAS  Google Scholar 

  • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Factories 10(1):2

    Article  CAS  Google Scholar 

  • Jayakody LN, Horie K, Hayashi N, Kitagaki H (2012) Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1. Appl Microbiol Biotechnol 94(1):273–283

    Article  PubMed  CAS  Google Scholar 

  • Jayakody LN, Hayashi N, Kitagaki H (2013a) Molecular mechanisms for detoxification of major aldehyde inhibitors for production of bioethanol by Saccharomyces cerevisiae from hot-compressed water-treated lignocelluloses. In: Vilas AM (ed) Material and process for energy: communicating current research and technology development. Formatex Research Center, Badajoz, pp 302–311

    Google Scholar 

  • Jayakody LN, Horie K, Hayashi N, Kitagaki H (2013b) Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(14):6589–6600

    Article  PubMed  CAS  Google Scholar 

  • Jayakody LN, Kadowaki M, Tsuge K, Horie K, Suzuki A, Hayashi N, Kitagaki H (2015) SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate. Appl Microbiol Biotechnol 99(1):501–515

    Article  PubMed  CAS  Google Scholar 

  • Jayakody LN, Ferdouse J, Hayashi N, Kitagaki H (2017) Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Crit Rev Biotechnol 37(2):177–189

    Article  PubMed  CAS  Google Scholar 

  • Jayakody LN, Johnson CW, Whitham JM, Giannone RJ, Black BA, Cleveland NS, Klingeman DM, Michener WE, Olstad JL, Vardon DR (2018) Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. Energy Environ Sci 11:1625–1638

    Article  CAS  Google Scholar 

  • Kim SR, Kwee NR, Kim H, Jin YS (2013a) Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res 13(3):312–321

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin Y-S (2013b) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 8(2):e57048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura A, Inoue Y (1993) Glyoxalase-I in microorganisms-molecular characteristics, genetics and biochemical regulation. Biochem Soc Trans 21:518–522

    Article  PubMed  CAS  Google Scholar 

  • Kua J, Galloway MM, Millage KD, Avila JE, De Haan DO (2013) Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data. J Phys Chem A 117(14):2997–3008

    Article  PubMed  CAS  Google Scholar 

  • Li Y-C, Gou Z-X, Zhang Y, Xia Z-Y, Tang Y-Q, Kida K (2017) Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation. Braz J Microbiol 48(4):791–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90(3):809–825

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96(18):1978–1985

    Article  PubMed  CAS  Google Scholar 

  • LoPachin RM, Gavin T (2014) Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 27(7):1081–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LoPachin RM, Gavin T, DeCaprio A, Barber DS (2011) Application of the hard and soft, acids and bases (HSAB) theory to toxicant–target interactions. Chem Res Toxicol 25(2):239–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X, Yamauchi K, Phaiboonsilpa N, Saka S (2009) Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J Wood Sci 55(5):367–375

    Article  CAS  Google Scholar 

  • Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 11(1):660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitraki A, Haase-Pettingell C, King J (1991) Mechanisms of inclusion body formation. ACS Publications

  • Moon J, Liu ZL (2012) Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzym Microb Technol 50(2):115–120

    Article  CAS  Google Scholar 

  • Nanda S, Kozinski JA, Dalai AK (2016) Lignocellulosic biomass: a review of conversion technologies and fuel products. Curr Biochem Eng 3(1):24–36

    Article  CAS  Google Scholar 

  • Nguyen TTM, Ishida Y, Kato S, Iwaki A, Izawa S (2018) The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae. Yeast 35:465–475

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Hashmi S, Li Z, Dement AD, Cho KH, Kim J-H (2016) The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast. Mol Biol Cell 27(5):862–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Salusjärvi L, Kankainen M, Soliymani R, Pitkänen J-P, Penttilä M, Ruohonen L (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Factories 7(1):18

    Article  CAS  Google Scholar 

  • Skerker JM, Leon D, Price MN, Mar JS, Tarjan DR, Wetmore KM, Deutschbauer AM, Baumohl JK, Bauer S, Ibánez AB (2013) Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Mol Syst Biol 9(1):674

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas JG, Baneyx F (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins. J Biol Chem 271(19):11141–11147

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Jin M, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ (2014) Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 111(1):152–164

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ma M, Liu ZL, Xiang Q, Li X, Liu N, Zhang X (2016) GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass. Appl Microbiol Biotechnol 100(15):6671–6682

    Article  PubMed  CAS  Google Scholar 

  • Warringer J, Blomberg A (2006) Involvement of yeast YOL151W/GRE2 in ergosterol metabolism. Yeast 23(5):389–398

    Article  PubMed  CAS  Google Scholar 

  • Webb SR, Lee H (1992) Characterization of xylose reductase from the yeast Pichia stipitis: evidence for functional thiol and histidyl groups. Microbiology 138(9):1857–1863

    CAS  Google Scholar 

  • Yu Y, Lou X, Wu H (2007) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuel 22(1):46–60

    Article  CAS  Google Scholar 

  • Zhang G, Kong II, Kim H, Liu J, Cate JH, Jin YS (2014) Construction of a quadruple auxotrophic mutant of an industrial polyploidy Saccharomyces cerevisiae using RNA-guided Cas9 nuclease. Appl Environ Microbiol 80(24):7694–701

  • Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS (2016) Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnol Bioeng 113(12):2587–2596

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by the Energy Bioscience Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Su Jin.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakody, L.N., Turner, T.L., Yun, E.J. et al. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism. Appl Microbiol Biotechnol 102, 8121–8133 (2018). https://doi.org/10.1007/s00253-018-9216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9216-x

Keywords

Navigation