Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068

Abstract

A strain of acetic acid bacteria, Komagataeibacter xylinus B-12068, was studied as a source for bacterial cellulose (BC) production. The effects of cultivation conditions (carbon sources, temperature, and pH) on BC production and properties were studied in surface and submerged cultures. Glucose was found to be the best substrate for BC production among the sugars tested; ethanol concentration of 3% (w/v) enhanced the productivity of BC. Optimization of medium and cultivation conditions ensures a high production of BC on glucose and glycerol, up to 2.4 and 3.3 g/L/day, respectively. C/N elemental analysis, emission spectrometry, SEM, DTA, and X-ray were used to investigate the structure and physical and mechanical properties of the BC produced under different conditions. MTT assay and SEM showed that native cellulose membrane did not cause cytotoxicity upon direct contact with NIH 3T3 mouse fibroblast cells and was highly biocompatible.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aytekin AÖ, Demirbağ DD, Bayrakdar T (2016) The statistical optimization of bacterial cellulose production via semi-continuous operation mode. J Industr Engin Chem 37:243–250. https://doi.org/10.1016/j.jiec.2016.03.030

    Article  CAS  Google Scholar 

  2. Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose-phosphate composite membranes. J Therm Anal Calorim 87:815–818. https://doi.org/10.1007/s10973-006-8170-5

    Article  CAS  Google Scholar 

  3. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJ (2011) Bacterial cellulose/poly (3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284. https://doi.org/10.1016/j.carbpol.2010.09.049

    Article  CAS  Google Scholar 

  4. Belosinschi D, Tofanica B-M (2018) A new bio-material with 3D lightweight network for energy and advanced applications. Cellulose 25:897–902. https://doi.org/10.1007/s10570-018-1652-3

    Article  Google Scholar 

  5. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. https://doi.org/10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  6. Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037. https://doi.org/10.1016/j.carbpol.2012.03.045

    Article  PubMed  CAS  Google Scholar 

  7. Culebras M, Grande CJ, Torres FG, Troncoso OP, Gomez CM, Bañó MC (2015) Optimization of cell growth on bacterial cellulose by adsorption of collagen and poly-L-lysine. Int J Polymer Mater 64:411–415. https://doi.org/10.1080/00914037.2014.958829

    Article  CAS  Google Scholar 

  8. Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Micr 55:2365–2370. https://doi.org/10.1099/ijs.0.63301-0

    Article  CAS  Google Scholar 

  9. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442. https://doi.org/10.1016/j.carbpol.2012.10.071

    Article  PubMed  CAS  Google Scholar 

  10. Garrity G, Staley JT, Boone DR, De Vos P, Goodfellow M, Rainey FA, Schleifer KH (2006) In: Brenner DJ, Krieg NR (eds) Bergey’s manual® of systematic bacteriology. Volume two: the proteobacteria. Springer-Verlag, New York

    Google Scholar 

  11. Gullo M, Sola A, Zanichelli G, Montorsi M, Messori M, Giudici P (2017) Increased production of bacterial cellulose as starting point for scaled-up applications. Appl Microbiol Biotechnol 101:8115–8127. https://doi.org/10.1007/s00253-017-8539-3

    Article  PubMed  CAS  Google Scholar 

  12. He M, Chen H, Zhang X, Wang C, Xu C, Xue Y, Wang J, Zhou P, Zhao Q (2018) Construction of novel cellulose/chitosan composite hydrogels and films and their applications. Cellulose 25:1987–1996. https://doi.org/10.1007/s10570-018-1683-9

    Article  CAS  Google Scholar 

  13. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352 PMCID: PMC1269899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202. https://doi.org/10.1016/j.carbpol.2015.09.043

    Article  PubMed  CAS  Google Scholar 

  15. Hungund BS, Gupta SG (2013) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172 http://www.ajol.info/index.php/ajb/article/download/92146/81586

    Google Scholar 

  16. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10. https://doi.org/10.4172/2155-9821.1000150

    Article  CAS  Google Scholar 

  17. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119. https://doi.org/10.1016/j.carbpol.2014.11.061

    Article  PubMed  CAS  Google Scholar 

  18. Lima HLS, Nascimento ES, Andrade FK, Brígida AIS, Borges MF, Cassales AR, Muniz CR, de SM Souza Filho M, JPS M, de F Rosa M (2017) Bacterial cellulose production by Komagataeibacter hansenii ATCC 23769 using sisal juice. Braz J Chem Eng 34(3):671–680. https://doi.org/10.1590/0104-6632.20170343s20150514

    Article  Google Scholar 

  19. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611. https://doi.org/10.1016/j.carbpol.2013.01.076

    Article  PubMed  CAS  Google Scholar 

  20. Ma X, Wang RM, Guan FM, Wang TF (2010) Artificial dura mater made from bacterial cellulose and polyvinyl alcohol. CN Patent ZL2007100155375

  21. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. https://doi.org/10.1016/j.carbpol.2014.10.008

    Article  PubMed  CAS  Google Scholar 

  22. Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from Acetobacter xylinum using different fermentation methods. Int J Eng Technol 11:90–98

    Google Scholar 

  23. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059. https://doi.org/10.1023/B:BILE.0000007065.63682.18

    Article  PubMed  CAS  Google Scholar 

  24. Pokalwar SU, Mishra MK, Manwar AV (2010) Production of cellulose by Gluconacetobacter sp. Recent Res Sci Technol 2:14–19

    CAS  Google Scholar 

  25. Prudnikova SV, Shidlovsky IP (2017) The new strain of acetic acid bacteria Komagataeibacter xylinus B-12068—producer of bacterial cellulose for biomedical applications. J Sib Fed Univ Biol 10(2):246–254

    Article  Google Scholar 

  26. Prudnikova SV, Volova TG, Shishatskaya EI, Shtamm bakterii Komagataeibacter xylinus—produtsent bakterialnoi tsellulozy (A strain of bacterium Komagataeibacter xylinus—a producer of bacterial cellulose). RF Patent for an invention No. 2568605. Priority of 11 December 2014. Registered in the RF State Register on 27 October 2015 (in Russian)

  27. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622. https://doi.org/10.1016/j.carbpol.2012.03.059

    Article  PubMed  CAS  Google Scholar 

  28. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:1–8. Article ID 175362. https://doi.org/10.1155/2011/175362

    Article  CAS  Google Scholar 

  29. Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21. https://doi.org/10.1093/aob/mci155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiol 11:123–129. https://doi.org/10.1099/00221287-11-1-123

    CAS  Article  Google Scholar 

  31. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885. https://doi.org/10.1007/s10570-008-9264-y

    Article  CAS  Google Scholar 

  32. Surma-Ślusarska B, Presler S, Danielewicz D (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibers Textiles Eastern Europe 4:108–111

    Google Scholar 

  33. Tabaii MJ, Emtiazi G (2016) Comparison of bacterial cellulose production among different strains and fermented media. Appl Food Biotechnol 3:35–41. https://doi.org/10.22037/afb.v3i1.10582

    CAS  Article  Google Scholar 

  34. Tanaka M, Murakami S, Shinke R, Aoki K (2000) Genetic characteristics of cellulose-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus. Biosci Biotechnol Biochem 644:757–760. https://doi.org/10.1271/bbb.64.757

    Article  Google Scholar 

  35. Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80. https://doi.org/10.1016/j.jclepro.2015.07.054

    Article  CAS  Google Scholar 

  36. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. https://doi.org/10.1007/s10924-012-0541-3

    Article  CAS  Google Scholar 

  37. Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikovn SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuân Bùi B, Việt DV, II G (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95(12):2350–2359. https://doi.org/10.1016/j.polymdegradstab.2010.08.023

    Article  CAS  Google Scholar 

  38. Wang S-S, Han Y-H, Yec Y-X, Shic X-X, Xiang P, Li D-LCM (2017) Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv 7:45145–45155. https://doi.org/10.1039/C7RA08391B

    Article  Google Scholar 

  39. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404. https://doi.org/10.2323/jgam.58.397

    Article  PubMed  CAS  Google Scholar 

  40. Yamanaka S, Sugiyama J (2000) Structural modification of bacterial cellulose. Cellulose 7(3):213–225. https://doi.org/10.1023/A:1009208022957

    Article  CAS  Google Scholar 

  41. Zhang H, Xu X, Chen X, Yuan F, Sun B, Xu Y, Yang J, Sun D (2017) Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 7(4431):4431. https://doi.org/10.1038/s41598-017-04589-6

  42. Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Curr Appl Phys 11:247–249. https://doi.org/10.1016/j.cap.2010.07.016

    Article  Google Scholar 

Download references

Acknowledgements

Surface of the samples was investigated using a scanning electron microscope Hitachi S-5500 in the center of the common use of Krasnoyarsk Scientific Center of Siberian Branch of Russian Academy of Sciences.

Funding

This study was funded by the Russian Foundation for Basic Research and Government of Krasnoyarsk Territory (project registration no. 16-43-242024) and the Russian Academy of Sciences (project registration no. 01201351505).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatiana G. Volova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals, performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volova, T.G., Prudnikova, S.V., Sukovatyi, A.G. et al. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Appl Microbiol Biotechnol 102, 7417–7428 (2018). https://doi.org/10.1007/s00253-018-9198-8

Download citation

Keywords

  • Bacterial cellulose
  • Growth conditions
  • Komagataeibacter xylinus