Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 17, pp 7351–7363 | Cite as

Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota

  • Isiri Perera
  • Suresh R. Subashchandrabose
  • Kadiyala Venkateswarlu
  • Ravi Naidu
  • Mallavarapu MegharajEmail author
Mini-Review

Abstract

Desert ecosystem is generally considered as a lifeless habitat with extreme environmental conditions although it is colonized by extremophilic microorganisms. Cyanobacteria, microalgae, and bacteria in these habitats could tolerate harsh and rapidly fluctuating environmental conditions, intense ultraviolet radiation, and lack of water, leading to cell desiccation. They possess valuable metabolites withstanding extreme environmental conditions and make them good candidates for industrial applications. Moreover, most natural microorganisms in these extreme habitats exist as consortia that provide robustness and extensive metabolic capabilities enabling them to establish important relationships in desert environments. Engineering of such consortia of cyanobacteria, microalgae, and bacteria would be functional in the sustainable development of deserts through improving soil fertility, water preservation, primary production, pollutant removal, and maintaining soil stability. Modern tools and techniques would help in constructing highly functional cyanobacterial/microalgal–bacterial consortia that are greatly useful in the establishment of vegetation in deserts as well as in biotechnological applications.

Keywords

Desert soil crusts Consortia Cyanobacteria/microalgae and bacteria Engineering consortia Ecological significance 

Notes

Acknowledgements

IP acknowledges the University of Newcastle for UNRS and UNIPRS scholarships, and SRS acknowledges the University of Newcastle for ECR HDR scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46(2):443–453.  https://doi.org/10.1590/S1517-838246220140219 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abed RMM, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodet Biodegrad 55(1):29–37.  https://doi.org/10.1016/j.ibiod.2004.07.001 CrossRefGoogle Scholar
  3. Abed RMM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72(3):418–428.  https://doi.org/10.1111/j.1574-6941.2010.00854.x PubMedCrossRefGoogle Scholar
  4. Abed RMM, Al-Kharusi S, Al-Hinai M (2015) Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int Biodet Biodegrad 98:43–52.  https://doi.org/10.1016/j.ibiod.2014.11.018 CrossRefGoogle Scholar
  5. Abed RMM, Palinska KA, Köster J (2018) Characterization of microbial mats from a desert Wadi ecosystem in the Sultanate of Oman. Geomicrobiol J 35(7):601–611.  https://doi.org/10.1080/01490451.2018.1435755 CrossRefGoogle Scholar
  6. Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2018) Microalgae–bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage. Appl Microbiol Biotechnol 102:1131–1144.  https://doi.org/10.1007/s00253-017-8693-7 PubMedCrossRefGoogle Scholar
  7. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98.  https://doi.org/10.1038/nature14488 PubMedCrossRefGoogle Scholar
  8. Azua-Bustos A, González-Silva C, Arenas-Fajardo C, Vicuña R (2012) Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama desert coastal range case. Front Microbiol 3:426.  https://doi.org/10.3389/fmicb.2012.00426 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25(3):913–917.  https://doi.org/10.1007/s10811-012-9923-0 CrossRefGoogle Scholar
  10. Baqué M, Viaggiu E, Scalzi G, Billi D (2013) Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles 17(1):161–169.  https://doi.org/10.1007/s00792-012-0505-5 PubMedCrossRefGoogle Scholar
  11. Bashan Y, de-Bashan LE (2010) Microbial populations of arid lands and their potential for restoration of deserts. In: Dion P (ed) Soil biology and agriculture in the tropics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 109–137Google Scholar
  12. Baumgarten E, Nagel M, Tischner R (1999) Reduction of the nitrogen and carbon content in swine waste with algae and bacteria. Appl Microbiol Biotechnol 52(2):281–284.  https://doi.org/10.1007/s002530051522 PubMedCrossRefGoogle Scholar
  13. Belnap J (1996) Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol Fert Soils 23(4):362–367.  https://doi.org/10.1007/BF00335908 CrossRefGoogle Scholar
  14. Belnap J (2003a) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 241–261CrossRefGoogle Scholar
  15. Belnap J (2003b) The world at your feet: desert biological soil crusts. Front Ecol Environ 1(4):181–185.  https://doi.org/10.2307/3868062 CrossRefGoogle Scholar
  16. Belnap J, Prasse R, Harper KT (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 281–300CrossRefGoogle Scholar
  17. Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86(2):298–307.  https://doi.org/10.1890/03-0567 CrossRefGoogle Scholar
  18. Belnap J, Phillips SL, Smith SD (2007) Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave desert shrubland. Flora Morphol Distrib Funct Ecol Plants 202(8):674–686.  https://doi.org/10.1016/j.flora.2007.05.007 CrossRefGoogle Scholar
  19. Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert ecosystems. Curr Sci 89(1):91–100Google Scholar
  20. Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15(6):1941–1951CrossRefGoogle Scholar
  21. Brown JH, Valone TJ, Curtin CG (1997) Reorganization of an arid ecosystem in response to recent climate change. Proc Nat Acad Sci USA 94(18):9729–9733.  https://doi.org/10.1073/pnas.94.18.9729 PubMedCrossRefGoogle Scholar
  22. Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:203.  https://doi.org/10.3389/fmicb.2012.00203 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. BioScience 58(2):114–122.  https://doi.org/10.1641/B580206 CrossRefGoogle Scholar
  24. Chamizo S, Cantón Y, Domingo F, Belnap J (2013) Evaporative losses from soils covered by physical and different types of biological soil crusts. Hydrol Process 27(3):324–332.  https://doi.org/10.1002/hyp.8421 CrossRefGoogle Scholar
  25. Chen X, Jia S, Wang Y, Wang N (2011) Biological crust of Nostoc flagelliforme (cyanobacteria) on sand bed materials. J Appl Phycol 23(1):67–71.  https://doi.org/10.1007/s10811-010-9538-2 CrossRefGoogle Scholar
  26. Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS (2015) Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour Technol 175:578–585.  https://doi.org/10.1016/j.biortech.2014.10.159 PubMedCrossRefGoogle Scholar
  27. Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res Biogeosci 112(G4):1–9.  https://doi.org/10.1029/2006JG000311 CrossRefGoogle Scholar
  28. Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TGA, Cary SC, Tuffin IM (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3(5):581–586.  https://doi.org/10.1111/j.1758-2229.2011.00266.x
  29. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438(7064):90–93.  https://doi.org/10.1038/nature04056 PubMedCrossRefGoogle Scholar
  30. de los Ríos A, Valea S, Ascaso C, Davila A, Kastovsky J, McKay CP, Gómez-Silva B, Wierzchos J (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol: Span Soc Microbiol 13:79–89Google Scholar
  31. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28(7):73–153Google Scholar
  32. Demirjian DC, Morı́s-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151.  https://doi.org/10.1016/S1367-5931(00)00183-6 PubMedCrossRefGoogle Scholar
  33. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama desert, Chile. Appl Environ Microbiol 72(12):7902–7908.  https://doi.org/10.1128/aem.01305-06 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Evans R, Johansen J (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18(2):183–225.  https://doi.org/10.1080/07352689991309199 CrossRefGoogle Scholar
  35. Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M (2007) Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model 208(2–4):205–214CrossRefGoogle Scholar
  36. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Nat Acad Sci USA 103(3):626–631.  https://doi.org/10.1073/pnas.0507535103 PubMedCrossRefGoogle Scholar
  37. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist 58(4):295–311Google Scholar
  38. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. In: Ponnamperuma C, Margulis L (eds) Limits of life. Springer Netherlands, Dordrecht, pp 33–45CrossRefGoogle Scholar
  39. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs 14(5):100.  https://doi.org/10.3390/md14050100 PubMedCentralCrossRefGoogle Scholar
  40. Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97(3):993–1004.  https://doi.org/10.1007/s00253-012-4642-7 PubMedCrossRefGoogle Scholar
  41. Gallardo A, Schlesinger WH (1992) Carbon and nitrogen limitations of soil microbial biomass in desert ecosystems. Biogeochemistry 18(1):1–17CrossRefGoogle Scholar
  42. Gao K (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10(1):37–49.  https://doi.org/10.1023/A:1008014424247 CrossRefGoogle Scholar
  43. Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67(4):1902–1910.  https://doi.org/10.1128/AEM.67.4.1902-1910.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Godinez-Alvarez H, Morin C, Rivera-Aguilar V (2012) Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert. Plant Biol (Stuttgart, Germany) 14(1):157–162.  https://doi.org/10.1111/j.1438-8677.2011.00495.x CrossRefGoogle Scholar
  45. Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J Royal Soc Interface 11(96).  https://doi.org/10.1098/rsif.2014.0065
  46. Gómez-Silva B, Rainey FA, Warren-Rhodes KA, McKay CP, Navarro-González R (2008) Atacama desert soil microbiology. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 117–132CrossRefGoogle Scholar
  47. Gonzalez-Bashan LE, Lebsky VK, Hernandez JP, Bustillos JJ, Bashan Y (2000) Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Canad J Microbiol 46(7):653–659CrossRefGoogle Scholar
  48. Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer Science & Business Media. p 288. ISBN 978-3-540-32355-6Google Scholar
  49. Grimm NB, Fisher SG, Minckley WL (1981) Nitrogen and phosphorus dynamics in hot desert streams of Southwestern U.S.A. Hydrobiologia 83(2):303–312.  https://doi.org/10.1007/BF00008281 CrossRefGoogle Scholar
  50. Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58(4):371–377.  https://doi.org/10.1007/s00284-008-9339-x PubMedCrossRefGoogle Scholar
  51. Hadley NF, Szarek SR (1981) Productivity of desert ecosystems. BioScience 31(10):747–753.  https://doi.org/10.2307/1308782 CrossRefGoogle Scholar
  52. Harper KT, Belnap J (2001) The influence of biological soil crusts on mineral uptake by associated vascular plants. J Arid Environ 47(3):347–357.  https://doi.org/10.1006/jare.2000.0713 CrossRefGoogle Scholar
  53. Heath C, Hu XP, Cary SC, Cowan D (2009) Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from Antarctic desert soil. Appl Environ Microbiol 75(13):4657–4659.  https://doi.org/10.1128/aem.02597-08 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10:395–402.  https://doi.org/10.1016/0167-7799(92)90282-Z PubMedCrossRefGoogle Scholar
  55. Holmes RM, Fisher SG, Grimm NB (1994) Parafluvial nitrogen dynamics in a desert stream ecosystem. J North Amer Benthol Soc 13(4):468–478.  https://doi.org/10.2307/1467844 CrossRefGoogle Scholar
  56. Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK (2012) Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun 3:613.  https://doi.org/10.1038/ncomms1616 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hokputsa S, Hu C, Paulsen BS, Harding SE (2003) A physico-chemical comparative study on extracellular carbohydrate polymers from five desert algae. Carbohydr Polym 54(1):27–32.  https://doi.org/10.1016/S0144-8617(03)00136-X CrossRefGoogle Scholar
  58. Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym 54(1):33–42.  https://doi.org/10.1016/S0144-8617(03)00135-8 CrossRefGoogle Scholar
  59. Karnieli A, Shachak M, Tsoar H, Zaady E, Kaufman Y, Danin A, Porter W (1996) The effect of microphytes on the spectral reflectance of vegetation in semiarid regions. Remote Sens Environ 57(2):88–96.  https://doi.org/10.1016/0034-4257(95)00209-X CrossRefGoogle Scholar
  60. Kaushal S, Singh Y, Khattar JIS, Singh DP (2017) Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J Appl Phycol 29(4):1819–1827.  https://doi.org/10.1007/s10811-017-1093-7 CrossRefGoogle Scholar
  61. Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14(6):1466–1476.  https://doi.org/10.1111/j.1462-2920.2012.02733.x PubMedCrossRefGoogle Scholar
  62. Kim J-D, Kim B, Lee C-G (2007) Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol Control 41(3):296–303CrossRefGoogle Scholar
  63. Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C (2014) Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol 48(1):307–315.  https://doi.org/10.1021/es403785j PubMedCrossRefGoogle Scholar
  64. Lan-Zhou C, Gao-Hong W, Song H, An L, Cheng L, Yong-Ding L (2009) UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol 51(2):194–200.  https://doi.org/10.1111/j.1744-7909.2008.00784.x CrossRefGoogle Scholar
  65. Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of Western North America. J Phycol 40(6):1127–1137.  https://doi.org/10.1111/j.1529-8817.2004.03235.x CrossRefGoogle Scholar
  66. Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51(3):443–451.  https://doi.org/10.2307/1554857 CrossRefGoogle Scholar
  67. Lewis LA, Lewis PO (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst Biol 54(6):936–947.  https://doi.org/10.1080/10635150500354852 PubMedCrossRefGoogle Scholar
  68. Li XR, Zhou HY, Wang XP, Zhu YG, O'Conner PJ (2003) The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger desert. Northern China Plant Soil 251(2):237–245.  https://doi.org/10.1023/A:1023023702248 CrossRefGoogle Scholar
  69. Liu W, Cui L, Xu H, Zhu Z, Gao X (2017) Flexibility-rigidity coordination of the dense exopolysaccharide matrix in terrestrial cyanobacteria acclimated to periodic desiccation. Appl Environ Microbiol 83(22):e01619-17.  https://doi.org/10.1128/aem.01619-17 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Malam Issa O, Stal LJ, Défarge C, Couté A, Trichet J (2001) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33(10):1425–1428.  https://doi.org/10.1016/S0038-0717(01)00046-3+ CrossRefGoogle Scholar
  71. Marc B, Renato M, Simone De O, Mauro M, Beatriz B (1999) Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquat Microb Ecol 20(3):285–297Google Scholar
  72. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663.  https://doi.org/10.1007/s002530100701 PubMedCrossRefGoogle Scholar
  73. Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 98(7):2917–2935.  https://doi.org/10.1007/s00253-014-5557-2 PubMedCrossRefGoogle Scholar
  74. Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21(2):121–130.  https://doi.org/10.1111/j.1574-6941.1996.tb00339.x CrossRefGoogle Scholar
  75. Megharaj M, Pearson HW, Venkateswarlu K (1992) Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enz Microb Technol 14(8):656–658.  https://doi.org/10.1016/0141-0229(92)90042-M CrossRefGoogle Scholar
  76. Megharaj M, Venkateswarlu K, Naidu R (2011a) Effects of carbaryl and 1-naphthol on soil population of cyanobacteria and microalgae and select cultures of diazotrophic cyanobacteria. Bull Environ Contam Toxicol 87(3):324–329.  https://doi.org/10.1007/s00128-011-0347-3 PubMedCrossRefGoogle Scholar
  77. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011b) Bioremediation approaches for organic pollutants: a critical perspective. Environ Internat 37(8):1362–1375.  https://doi.org/10.1016/j.envint.2011.06.003 CrossRefGoogle Scholar
  78. Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47(2):195–312CrossRefGoogle Scholar
  79. Miralles I, Domingo F, Cantón Y, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012) Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biol Biochem 53:124–132.  https://doi.org/10.1016/j.soilbio.2012.05.016 CrossRefGoogle Scholar
  80. Moreno J, Bastida F, Hernández T, Garcia C (2008) Relationship between agricultural management of a semi-arid soil and microbiological quality. Commun Soil Sci Plant Anal 39:421–439.  https://doi.org/10.1080/00103620701826548 CrossRefGoogle Scholar
  81. Mouget J-L, Dakhama A, Lavoie MC, de la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18(1):35–43.  https://doi.org/10.1016/0168-6496(95)00038-C CrossRefGoogle Scholar
  82. Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815.  https://doi.org/10.1016/j.watres.2006.06.011 PubMedCrossRefGoogle Scholar
  83. Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54(2):233–245.  https://doi.org/10.1016/j.femsec.2005.03.011 PubMedCrossRefGoogle Scholar
  84. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, LaComb M, Betancourt JL, Wing RA, Soderlund CA (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert. Chile Extremophiles 16(3):553–566PubMedCrossRefGoogle Scholar
  85. Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729.  https://doi.org/10.1007/s002530051456 PubMedCrossRefGoogle Scholar
  86. Nithya K, Muthukumar C, Kadaikunnan S, Alharbi NS, Khaled JM, Dhanasekaran D (2017) Purification, characterization, and statistical optimization of a thermostable α-amylase from desert actinobacterium Streptomyces fragilis DA7-7. 3 Biotech 7(5):350.  https://doi.org/10.1007/s13205-017-0981-5 PubMedCrossRefGoogle Scholar
  87. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10(8):551–562.  https://doi.org/10.1038/nrmicro2831 PubMedCrossRefGoogle Scholar
  88. Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Nat Acad Sci USA 106(47):19964–19969.  https://doi.org/10.1073/pnas.0908274106 PubMedCrossRefGoogle Scholar
  89. Poong S-W, Lim P-E, Phang S-M, Wong C-Y, Pai T-W, Chen C-M, Yang C-H, Liu C-C (2018) Transcriptome sequencing of an Antarctic microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) subjected to short-term ultraviolet radiation stress. J Appl Phycol 30(1):87–99.  https://doi.org/10.1007/s10811-017-1124-4 CrossRefGoogle Scholar
  90. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280(5372):2095–2098PubMedCrossRefGoogle Scholar
  91. Prakash O, Jaiswal N (2010) α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160(8):2401–2414.  https://doi.org/10.1007/s12010-009-8735-4 PubMedCrossRefGoogle Scholar
  92. Puente ME, Bashan Y, Li CY, Lebsky VK (2008) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6(5):629–642.  https://doi.org/10.1055/s-2004-821100 CrossRefGoogle Scholar
  93. Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr IM (1998) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oil Kuwaiti desert. Microbiol Res 153(3):247–251.  https://doi.org/10.1016/S0944-5013(98)80007-4 CrossRefGoogle Scholar
  94. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park M-J, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71(9):5225–5235.  https://doi.org/10.1128/aem.71.9.5225-5235.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29.  https://doi.org/10.1016/j.biotechadv.2015.12.003 PubMedCrossRefGoogle Scholar
  96. Redfield E, Barns SM, Belnap J, Daane LL, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 40(1):55–63.  https://doi.org/10.1111/j.1574-6941.2002.tb00936.x PubMedCrossRefGoogle Scholar
  97. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151(2):341–353.  https://doi.org/10.1046/j.1469-8137.2001.00177.x CrossRefGoogle Scholar
  98. Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287(5459):1793–1796.  https://doi.org/10.1126/science.287.5459.1793 PubMedCrossRefGoogle Scholar
  99. Safriel U, Adeel Z, Niemeijer D, Puigdefabregas J, White R, Lal R, Winsolow M, Ziedler J, Prince S, Archer E (2006) Dryland systems ecosystems and human well-being current state and trends, vol Vol 1. Island Press, pp 625–656Google Scholar
  100. Saul-Tcherkas V, Unc A, Steinberger Y (2013) Soil microbial diversity in the vicinity of desert shrubs. Microb Ecol 65(3):689–699.  https://doi.org/10.1007/s00248-012-0141-8 PubMedCrossRefGoogle Scholar
  101. Sears J, Prithiviraj B (2012) Seeding of large areas with biological soil crust starter culture formulations using an aircraft disbursable granulate to increase stability, fertility and CO2 sequestration on a landscape scale. 2012 IEEE Green Technologies Conference. pp. 1–3.  https://doi.org/10.1109/GREEN.2012.6200934
  102. Scherer S, Zhong Z-P (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (cyanobacteria). Microb Ecol 22(1):271–283.  https://doi.org/10.1007/BF02540229 PubMedCrossRefGoogle Scholar
  103. Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5(4):453–462.  https://doi.org/10.1016/j.funeco.2011.12.007 CrossRefGoogle Scholar
  104. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907.  https://doi.org/10.1016/j.biotechadv.2011.07.009 PubMedCrossRefGoogle Scholar
  105. Subashchandrabose SR, Megharaj M, Venkateswarlu K, Naidu R (2012) p-Nitrophenol toxicity to and its removal by three select soil isolates of microalgae: the role of antioxidants. Environ Toxicol Chem 31(9):1980–1988.  https://doi.org/10.1002/etc.1931 PubMedCrossRefGoogle Scholar
  106. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Internat 51:59–72.  https://doi.org/10.1016/j.envint.2012.10.007 CrossRefGoogle Scholar
  107. Subashchandrabose SR, Megharaj M, Venkateswarlu K, Naidu R (2015) Interaction effects of polycyclic aromatic hydrocarbons and heavy metals on a soil microalga, Chlorococcum sp. MM11. Environ Sci Pollut Res 22(12):8876–8889.  https://doi.org/10.1007/s11356-013-1679-9 CrossRefGoogle Scholar
  108. Subashchandrabose SR, Logeshwaran P, Venkateswarlu K, Naidu R, Megharaj M (2017a) Pyrene degradation by Chlorella sp. MM3 in liquid medium and soil slurry: possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Res 23:223–232.  https://doi.org/10.1016/j.algal.2017.02.010 CrossRefGoogle Scholar
  109. Subashchandrabose SR, Wang L, Venkateswarlu K, Naidu R, Megharaj M (2017b) Interactive effects of PAHs and heavy metal mixtures on oxidative stress in Chlorella sp. MM3 as determined by artificial neural network and genetic algorithm. Algal Res 21:203–212.  https://doi.org/10.1016/j.algal.2016.11.018 CrossRefGoogle Scholar
  110. Teplitski M, Rajamani S (2011) Signal and nutrient exchange in the interactions between soil algae and bacteria. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 413–426CrossRefGoogle Scholar
  111. Trejo A, de-Bashan LE, Hartmann A, Hernandez J-P, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exper Bot 75:65–73.  https://doi.org/10.1016/j.envexpbot.2011.08.007 CrossRefGoogle Scholar
  112. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol184:363–372.  https://doi.org/10.1016/j.biortech.2014.11.040
  113. Vassilev N, Eichler-Löbermann B, Vassileva M (2012) Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95(4):851–859.  https://doi.org/10.1007/s00253-012-4224-8 PubMedCrossRefGoogle Scholar
  114. Vítek P, Jehlička J, Ascaso C, Mašek V, Gómez-Silva B, Olivares H, Wierzchos J (2014) Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol Ecol 90(2):351–366.  https://doi.org/10.1111/1574-6941.12387 PubMedCrossRefGoogle Scholar
  115. Vítek P, Ascaso C, Artieda O, Casero MC, Wierzchos J (2017) Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama desert. Sci Rep 7(1):11116.  https://doi.org/10.1038/s41598-017-11581-7 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang G, Chen K, Chen L, Hu C, Zhang D, Liu Y (2008) The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicol Environ Saf 69(1):150–157.  https://doi.org/10.1016/j.ecoenv.2006.03.014 PubMedCrossRefGoogle Scholar
  117. Wang W, Liu Y, Li D, Hu C, Rao B (2009) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41(5):926–929.  https://doi.org/10.1016/j.soilbio.2008.07.001 CrossRefGoogle Scholar
  118. Ward D (2016) The biology of deserts (biology of habitats series), 2nd Edn. Oxford University Press, p 461. ISBN 978-0-19-873275-4Google Scholar
  119. Watt M, McCully ME, Canny MJ (1994) Formation and stabilization of rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol 106(1):179–186PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6(3):415–422PubMedCrossRefGoogle Scholar
  121. Wierzchos J, DiRuggiero J, Vitek P, Artieda O, Souza-Egipsy V, Skaloud P, Tisza M, Davila AF, Vilchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama desert. Front Microbiol 6:934.  https://doi.org/10.3389/fmicb.2015.00934 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wu L, Zhu Q, Yang L, Li B, Hu C, Lan S (2018) Nutrient transferring from wastewater to desert through artificial cultivation of desert cyanobacteria. Bioresour Technol 247:947–953.  https://doi.org/10.1016/j.biortech.2017.09.127 PubMedCrossRefGoogle Scholar
  123. Xu Y, Rossi F, Colica G, Deng S, De Philippis R, Chen L (2013) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49(2):143–152.  https://doi.org/10.1007/s00374-012-0707-0 CrossRefGoogle Scholar
  124. Xu Z, Hou Y, Zhang L, Liu T, Zhou G (2016) Ecosystem responses to warming and watering in typical and desert steppes. Sci Rep 6:34801.  https://doi.org/10.1038/srep34801 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Xue L, Shang H, Ma P, Wang X, He X, Niu J, Wu J (2018) Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. J Basic Microbiol 58(4):358–367.  https://doi.org/10.1002/jobm.201700594 PubMedCrossRefGoogle Scholar
  126. Yasir M, Azhar EI, Khan I, Bibi F, Baabdullah R, Al-Zahrani IA, Al-Ghamdi AK (2015) Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol 15(1):65.  https://doi.org/10.1186/s12866-015-0398-4 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci 7(295).  https://doi.org/10.3389/fpls.2016.00295
  128. Zambrano J, Krustok I, Nehrenheim E, Carlsson B (2016) A simple model for algae-bacteria interaction in photo-bioreactors. Algal Res 19:155–161.  https://doi.org/10.1016/j.algal.2016.07.022 CrossRefGoogle Scholar
  129. Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK (2014) Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83(4):391–397.  https://doi.org/10.1134/s0026261714040171 CrossRefGoogle Scholar
  130. Zhang B, Zhang Y, Su Y, Wang J, Zhang J (2013) Responses of microalgal-microbial biomass and enzyme activities of biological soil crusts to moisture and inoculated Microcoleus vaginatus gradients. Arid Land Res Manag 27(3):216–230.  https://doi.org/10.1080/15324982.2012.754514 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Global Centre for Environmental Remediation (GCER), Faculty of ScienceThe University of NewcastleNewcastleAustralia
  2. 2.Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)The University of NewcastleNewcastleAustralia
  3. 3.Department of MicrobiologySri Krishnadevaraya UniversityAnantapurIndia

Personalised recommendations