Applied Microbiology and Biotechnology

, Volume 102, Issue 16, pp 7195–7205 | Cite as

Temporal and spatial distribution of ammonia-oxidizing organisms of two types of wetlands in Northeast China

  • Dawen Gao
  • Fengqin Liu
  • Yue Xie
  • Hong Liang
Environmental biotechnology


Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) contribute significantly to the nitrogen cycle. The community structure of AOA and AOB is diverse in the different wetlands. Few studies have comparatively investigated the community structure and dynamics of ammonia-oxidizing organisms in the marsh wetland (Sanjiang wetland) and inland saline-alkaline wetland (Zhalong wetland) in Northeast China. In this study, soil samples were collected from two wetlands with different soil properties in July and October. The community structure of AOA and AOB based on the amoA gene was investigated by high throughput sequencing. The result showed that AOA affiliated to the Nitrososphaera lineage (1.1b group) were the dominant AOA in both Sanjiang and Zhalong wetlands, while AOB belonging to the Nitrosospira lineage was the dominant AOB in the Sanjiang wetland. AOB belonging to the Nitrosospira lineage and Nitrosomonas lineage were the dominant AOB in the Zhalong wetland in July and October, respectively. The dominant AOA and AOB in the Sanjiang wetland had no obvious variation from July to October, but the AOA and AOB communities in the Zhalong wetland changed a lot from July to October. Shannon and Simpson indexes showed the diversity of AOA in the Zhalong wetland was higher than that in the Sanjiang wetland, but the diversity of AOB in the Zhalong wetland was lower than that in the Sanjiang wetland. Nitrate (NO3) and ammonium (NH4+) concentration and pH were the most significant factors influencing the community structure of AOA and AOB.


Ammonia-oxidizing archaea Ammonia-oxidizing bacteria Wetland Genetic diversity amoA gene 


Funding information

This research was supported by National Natural Science Foundation of China (No. 31470543) and the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2014DX07).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen CH, Gao DW, Tao Y (2013) Diversity and distribution of ammonia-oxidizing Archaea in the seasonally frozen soils in Northeastern China. Appl Environ Microbiol 97(14):6571–6579Google Scholar
  3. Di H, Cameron K, Shen JP, Winefield C, O’Callaghan M, Bowatte S, He J (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2(9):621–624CrossRefGoogle Scholar
  4. e Silva P, Poly F, Guillaumaud N, van Elsas JD, Salles JF (2012) Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH. Front Microbiol 3:77CrossRefGoogle Scholar
  5. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  6. Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33(5):855–869CrossRefPubMedGoogle Scholar
  7. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102(41):14683–14688CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 108(52):21206–21211CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gubry-Rangin C, Novotnik B, Mandič-Mulec I, Nicol GW, Prosser JI (2017) Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biol Biochem 106:61–68CrossRefGoogle Scholar
  10. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105(6):2134–2139CrossRefPubMedPubMedCentralGoogle Scholar
  11. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(9):2364–2374CrossRefPubMedGoogle Scholar
  12. Hou J, Song C, Cao X, Zhou Y (2013) Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res 47(7):2285–2296CrossRefPubMedGoogle Scholar
  13. Hu Z, Meng H, Shi JH, Bu NS, Fang CM, Quan ZX (2014) Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem. Front Microbiol 5:371CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671CrossRefPubMedGoogle Scholar
  15. Jiang H, Huang L, Deng Y, Wang S, Zhou Y, Liu L, Dong H (2014) Latitudinal distribution of ammonia-oxidizing bacteria and archaea in the agricultural soils of Eastern China. Appl Environ Microb 80(18):5593–5602CrossRefGoogle Scholar
  16. Jiang X, Hou X, Zhou X, Xin X, Wright A, Jia Z (2015) pH regulates key players of nitrification in paddy soils. Soil Biol Biochem 81:9–16CrossRefGoogle Scholar
  17. Jones RD, Morita RY, Koops H-P, Watson SW (1988) A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov. Can J Microbiol 34(10):1122–1128CrossRefGoogle Scholar
  18. Ke X, Lu Y (2012) Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol Ecol 80(1):87–97CrossRefPubMedGoogle Scholar
  19. Kim J-G, Park S-J, Damsté JSS, Schouten S, Rijpstra WIC, Jung M-Y, Kim S-J, Gwak J-H, Hong H, Si O-J (2016) Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci U S A 113(28):7888–7893CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549(7671):269–272CrossRefPubMedPubMedCentralGoogle Scholar
  21. Könneke M, Bernhard AE, José R, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546CrossRefPubMedGoogle Scholar
  22. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci U S A 108(38):15892–15897CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015) Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ Sci Technol 49(19):11560–11568CrossRefPubMedGoogle Scholar
  24. Liu R, Wang Q, Lu X, Fang F, Wang Y (2003) Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environ Pollut 124(1):39–46CrossRefPubMedGoogle Scholar
  25. Liu Y, Jiang M, Lu X, Lou Y, Liu B (2017) Carbon, nitrogen and phosphorus contents of wetland soils in relation to environment factors in Northeast China. Wetlands 37(1):153–161CrossRefGoogle Scholar
  26. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963CrossRefPubMedPubMedCentralGoogle Scholar
  27. Martens-Habbena W, Berube PM, Urakawa H, José R, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266):976–979CrossRefPubMedGoogle Scholar
  28. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978CrossRefPubMedGoogle Scholar
  29. Norman J, Barrett J (2016) Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils. Soil Biol Biochem 94:169–172CrossRefGoogle Scholar
  30. Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WIC, Ossebaar J, Schouten S, Wagner M, Damsté JSS (2010) Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I. 1b Archaeon. ISME J 4(4):542–552CrossRefPubMedGoogle Scholar
  32. Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci U S A 108(10):4170–4175CrossRefPubMedPubMedCentralGoogle Scholar
  33. Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20(11):523–531CrossRefPubMedGoogle Scholar
  34. Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10(6):1601–1611CrossRefPubMedGoogle Scholar
  35. Shen J-P, Zhang L-M, Di HJ, He J-Z (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3(3):296PubMedPubMedCentralGoogle Scholar
  36. Sims A, Horton J, Gajaraj S, McIntosh S, Miles RJ, Mueller R, Reed R, Hu Z (2012) Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res 46(13):4121–4129CrossRefPubMedGoogle Scholar
  37. Song C, Xu X, Tian H, Wang Y (2009) Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob Chang Biol 15(3):692–705CrossRefGoogle Scholar
  38. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18(8):331–340CrossRefPubMedGoogle Scholar
  39. Stahl DA, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66(1):83–101CrossRefPubMedGoogle Scholar
  40. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5(6):1067–1071CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang Y-F, Gu J-D (2013) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl Microbiol Biotechnol 97(15):7015–7033CrossRefPubMedGoogle Scholar
  42. Wang S, Wang Y, Feng X, Zhai L, Zhu G (2011) Quantitative analyses of ammonia-oxidizing archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Appl Microbiol Biotechnol 90(2):779–787CrossRefPubMedGoogle Scholar
  43. Wang B, Zheng Y, Huang R, Zhou X, Wang D, He Y, Jia Z (2014a) Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon. Appl Environ Microbiol 80(5):1684–1691CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yang Y, Shan J, Zhang J, Zhang X, Xie S, Liu Y (2014) Ammonia-and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. Appl Microbiol Biotechnol 98(24):10197–10209CrossRefPubMedGoogle Scholar
  45. Yang Y, Zhang J, Zhao Q, Zhou Q, Li N, Wang Y, Xie S, Liu Y (2016) Sediment ammonia-oxidizing microorganisms in two plateau freshwater lakes at different trophic states. Microb Ecol 71(2):257–265CrossRefPubMedGoogle Scholar
  46. Ying J, Li X, Wang N, Lan Z, He J, Bai Y (2017) Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biol Biochem 107:10–18CrossRefGoogle Scholar
  47. Yun J, Zhang H, Deng Y, Wang Y (2015) Aerobic methanotroph diversity in Sanjiang wetland, Northeast China. Microb Ecol 69(3):567–576CrossRefPubMedGoogle Scholar
  48. Zhang N, Zang SS (2015) Community structure characteristics of phytoplankton in Zhalong wetland, China. Pak J Bot 47(1):359–366Google Scholar
  49. Zhang X, Song C, Mao R, Yang G, Tao B, Shi F, Zhu X, Hou A (2014) Litter mass loss and nutrient dynamics of four emergent macrophytes during aerial decomposition in freshwater marshes of the Sanjiang plain, Northeast China. Plant Soil 385(1–2):139–147Google Scholar
  50. Zhao D, Zeng J, Wan W, Liang H, Huang R, Wu QL (2013) Vertical distribution of ammonia-oxidizing archaea and bacteria in sediments of a eutrophic lake. Curr Microbiol 67(3):327–332CrossRefPubMedGoogle Scholar
  51. Zhou L, Wang Y, Long X-E, Guo J, Zhu G (2014) High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett 360(1):33–41CrossRefPubMedGoogle Scholar
  52. Zhou L, Wang S, Zou Y, Xia C, Zhu G (2015) Species, abundance and function of ammonia-oxidizing archaea in inland waters across China. Sci Rep 5:15969CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina

Personalised recommendations