Advertisement

Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor

  • Miriam Martínez-Castro
  • Carlos Barreiro
  • Juan F. Martín
Applied genetics and molecular biotechnology
  • 5 Downloads

Abstract

Inorganic and organic phosphate controls both primary and secondary metabolism in Streptomyces genus. Metabolism regulation by phosphate in Streptomyces species is mediated by the PhoR-PhoP two-component system. Response regulator PhoP binds to conserved sequences of 11 nucleotides called direct repeat units (DRus), whose organization and conservation determine the binding of PhoP to distinct promoters. Streptomyces tsukubaensis is the industrial producer of the clinical immunosuppressant tacrolimus (FK506). A bioinformatic genome analysis detected several genes with conserved PHO boxes involved in phosphate scavenging and transport, nitrogen regulation, and secondary metabolite production. In this article, the PhoP regulation has been confirmed by electrophoretic mobility shift assays (EMSA) of the most relevant members of the traditional pho regulon such as the two-component system PhoR-P or genes involved in high-affinity phosphate transport (pstSCAB) and low-affinity phosphate transport (pit). However, the PhoP control over phosphatase genes in S. tsukubaensis is significantly different from the pattern reported in the model bacteria Streptomyces coelicolor. Thus, neither the alkaline phosphatase PhoA nor PhoD is regulated by PhoP. On the contrary, the binding of PhoP to the promoter of a novel putative phosphatase PhoX was confirmed. A crosstalk of the PhoP and GlnR regulators, which balances phosphate and nitrogen utilization, also occurs in S. tsukubaensis but slightly modified. Finally, PhoP regulates genes, like afsS, that link phosphate control and secondary metabolite production in S. tsukubaensis. In summary, there are notable differences between the regulation of specific genes of the pho regulon in S. tsukubaensis and the model organism S. coelicolor.

Keywords

PhoP Streptomyces tsukubaensis Phosphate Tacrolimus FK506 pho regulon 

Notes

Acknowledgements

This work was supported by the European Union call ERA-IB through the MICINN (Spanish Ministry of Science and Innovation; PIM2010EEI-00677). M. Martínez-Castro received a PFU fellowship (AP2005-2727) of the Ministry of Education and Science. We acknowledge the specialized support of A. Rodríguez-García and S. Albillos and the technical support of B. Martín, J. Merino, and A. Casenave.

Funding

This study was supported by the European Union call ERA-IB through the MICINN (Spanish Ministry of Science and Innovation; PIM2010EEI-00677).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9140_MOESM1_ESM.pdf (172 kb)
ESM 1 (PDF 172 kb)

References

  1. Allenby NE, Laing E, Bucca G, Kierzek AM, Smith CP (2012) Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 40(19):9543–9556CrossRefPubMedPubMedCentralGoogle Scholar
  2. Apel K, Sola-Landa A, Rodríguez-García A, Martín JF (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153:3527–3537CrossRefPubMedGoogle Scholar
  3. Arraes FBM, de Carvalho MJA, Maranhão AQ, Brígido MM, Pedrosa FO, Felipe MSS (2007) Differential metabolism of Mycoplasma species as revealed by their genomes. Genet Mol Biol 30(1):182–189CrossRefGoogle Scholar
  4. Barreiro C, Martínez-Castro M (2014) Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl Microbiol Biotechnol 98(2):497–507CrossRefPubMedGoogle Scholar
  5. Barreiro C, Prieto C, Sola-Landa A, Solera E, Martínez-Castro M, Pérez-Redondo R, García-Estrada C, Aparicio JF, Fernández-Martínez LT, Santos-Aberturas J, Salehi-Najafabadi Z, Rodríguez-García A, Tauch A, Martín JF (2012) Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506). J Bacteriol 194(14):3756–3757CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carr WW (2013) Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr Drugs 15(4):303–310CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen D, Zhang Q, Zhang Q, Cen P, Xu Z, Liu W (2012) Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 78:5093–5103CrossRefPubMedPubMedCentralGoogle Scholar
  8. Du W, Huang D, Xia M, Wen J, Huang M (2014) Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies. J Ind Microbiol Biotechnol 41(7):1131–1143CrossRefPubMedGoogle Scholar
  9. Gajzlerska W, Kurkowiak J, Turło J (2015) Use of three-carbon chain compounds as biosynthesis precursors to enhance tacrolimus production in Streptomyces tsukubaensis. N Biotechnol 25;32(1):32–39Google Scholar
  10. Ghorbel S, Smirnov A, Chouayekh H, Sperandio B, Esnault C, Kormanec J, Virolle MJ (2006) Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol 188(17):6269–6276CrossRefPubMedPubMedCentralGoogle Scholar
  11. Goranovič D, Blažič M, Magdevska V, Horvat J, Kuščer E, Polak T, Santos-Aberturas J, Martínez-Castro M, Barreiro C, Mrak P, Kopitar G, Kosec G, Fujs S, Martín JF, Petković H (2012) FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiol 12:238CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huang D, Xia M, Li S (2013) Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J Ind Microbiol Biotechnol 40(9):1023–1037CrossRefPubMedGoogle Scholar
  13. Hulett FM (1996) The signal-transduction network for pho regulation in Bacillus subtilis. Mol Microbiol 19:933–939CrossRefPubMedGoogle Scholar
  14. Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150(Pt 9):2795–2806CrossRefPubMedGoogle Scholar
  15. Ingram JR, Martin JA, Finlay AY (2009) Impact of topical calcineurin inhibitors on quality of life in patients with atopic dermatitis. Am J Clin Dermatol 10(4):229–237CrossRefPubMedGoogle Scholar
  16. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics The John Innes Foundation, NorwichGoogle Scholar
  17. Kino T, Goto T (1993) Discovery of FK-506 and update. Ann N Y Acad Sci 685:13–21CrossRefPubMedGoogle Scholar
  18. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987a) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40:1249–1255CrossRefGoogle Scholar
  19. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H (1987b) FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 40:1256–1265CrossRefGoogle Scholar
  20. Klettner A, Herdegen T (2003) FK506 and its analogs-therapeutic potential for neurological disorders. Curr Drug Targets CNS Neurol Disord 2(3):153–162CrossRefPubMedGoogle Scholar
  21. Konofaos P, Terzis JK (2013) FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg 29(3):141–148CrossRefPubMedGoogle Scholar
  22. Larson TJ, Ehrmann M, Boos W (1983) Periplasmid glycerophosphodiester phosphodiesterase of Eschericha coli, a new enzyme of the glp regulon. J Biol Chem 258:5428–5432PubMedGoogle Scholar
  23. Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H (1994) Mechanism of transcriptional activation of the phosphate regulon in Escherichia coli. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in Microoganisms. American Society for Microbiology Press, Washington DC, pp 5–12Google Scholar
  24. Martín JF (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 186:5197–5201CrossRefPubMedPubMedCentralGoogle Scholar
  25. Martín JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13(3):263–273CrossRefPubMedGoogle Scholar
  26. Martín JF, Sola-Landa A, Rodríguez-García A (2012a) Two-component systems in Streptomyces. In: Gross R, Beier D (eds) Two-component systems in bacteria. Caiser Academic, Würburg, pp 315–331Google Scholar
  27. Martín JF, Santos-Beneit F, Rodríguez-García A, Sola-Landa A, Smith MCM, Ellingsen TE, Nieselt K, Burroughs NJ, Wellington EMH (2012b) Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 95:61–75CrossRefPubMedGoogle Scholar
  28. Martín JF, Rodríguez-García A, Liras P (2017) The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot (Tokyo) 70(5):534–541CrossRefGoogle Scholar
  29. Martínez-Castro M, Salehi-Najafabadi Z, Romero F, Pérez-Sanchiz R, Fernández-Chimeno RI, Martín JF, Barreiro C (2013) Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer ‘Streptomyces tsukubaensis’. Appl Microbiol Biotechnol 97(5):2139–2152CrossRefPubMedGoogle Scholar
  30. Martín-Martín S, Rodríguez-García A, Santos-Beneit F, Franco-Domínguez E, Sola-Landa A, Martín JF (2018) Self-control of the PHO regulon: the PhoP-dependent protein PhoU controls negatively expression of genes of PHO regulon in Streptomyces coelicolor. J Antibiot (Tokyo) 71:113–122CrossRefGoogle Scholar
  31. Meier-Kriesche HU, Li S, Gruessner RWG, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6:1111–1131CrossRefPubMedGoogle Scholar
  32. Mendes MV, Tunca S, Antón N, Recio E, Sola-Landa A, Aparicio JF, Martín JF (2007) The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Mettab Eng 9(2):217–227CrossRefGoogle Scholar
  33. Moura RS, Martín JF, Martín A, Liras P (2001) Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus. Microbiology 147(Pt 6):1525–1533CrossRefPubMedGoogle Scholar
  34. Muramatsu H, Nagai K (2013) Streptomyces tsukubensis sp. nov., a producer of the immunosuppressant tacrolimus. J Antibiot (Tokyo) 66:251–254CrossRefGoogle Scholar
  35. Ordóñez-Robles M, Santos-Beneit F, Albillos SM, Liras P, Martín JF, Rodríguez-García A (2017a) Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. Appl Microbiol Biotechnol 101(22):8181–8195CrossRefPubMedGoogle Scholar
  36. Ordóñez-Robles M, Santos-Beneit F, Rodríguez-García A, Martín JF (2017b) Analysis of the pho regulon in Streptomyces tsukubaensis. Microbiol Res 205:80–87CrossRefPubMedGoogle Scholar
  37. Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7:2410–2429CrossRefPubMedGoogle Scholar
  38. Rodríguez-García A, Sola-Landa A, Apel K, Santos-Beneit F, Martín JF (2009) Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res 37(10):3230–3242CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rodríguez-García A, Sola-Landa A, Barreiro C (2017) RNA-Seq-based comparative transcriptomics: RNA preparation and bioinformatics. Methods Mol Biol 1645:59–72CrossRefPubMedGoogle Scholar
  40. Salehghamari E, Hamedi J, Elahi E, Sepehrizadeh Z, Sadeghi M, Muth G (2012) Prediction of the pho regulon in Streptomyces clavuligerus DSM 738. New Microbiol 35(4):447–457PubMedGoogle Scholar
  41. Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF (2014) The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 98(11):4919–4936CrossRefPubMedGoogle Scholar
  42. Santos-Beneit F (2015) The pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402CrossRefPubMedPubMedCentralGoogle Scholar
  43. Santos-Beneit F, Rodríguez-García A, Franco-Domínguez E, Martín JF (2008) Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154(Pt8):2656–2370Google Scholar
  44. Santos-Beneit F, Rodríguez-García A, Apel AK, Martín JF (2009a) Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. Microbiology 155(Pt6):1800–1811CrossRefPubMedGoogle Scholar
  45. Santos-Beneit F, Rodríguez-Garcia A, Sola-Landa A, Martin JF (2009b) Cross-talk between two global regulators in Streptomyces PhoP and AfsR interact in the control of afsS, pstS and phoPR transcription. Mol Microbiol 72:53–68CrossRefPubMedGoogle Scholar
  46. Satiaputra J, Shearwin KE, Booker GW, Polyak SW (2016) Mechanisms of biotin-regulated gene expression in microbes. Synth Syst Biotechnol 1:17–24CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schneider TD (1996) Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods Enzymol 274:445–455CrossRefPubMedGoogle Scholar
  48. Schneider TD (1997) Information content of individual genetic sequences. J Theor Biol 189(4):427–441CrossRefPubMedGoogle Scholar
  49. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shimizu K (2014) Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4(1):1–35CrossRefGoogle Scholar
  51. Shrestha BM (2017) Two decades of tacrolimus in renal transplant: basic science and clinical evidences. Exp Clin Transplant 15(1):1–9PubMedGoogle Scholar
  52. Sierra-Paredes G, Sierra-Marcuño G (2008) Ascomycin and FK506: pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci Ther 14(1):36–46CrossRefPubMedGoogle Scholar
  53. Sola-Landa A, Moura RS, Martín JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100(10):6133–6138CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sola-Landa A, Rodríguez-García A, Franco-Domínguez E, Martín JF (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56(5):1373–1385CrossRefPubMedGoogle Scholar
  55. Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF (2008) Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36(4):1358–1368CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sola-Landa A, Rodríguez-García A, Amin R, Wohlleben W, Martín JF (2013) Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. Nucleic Acids Res 41(3):1767–1782CrossRefPubMedGoogle Scholar
  57. Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880CrossRefPubMedGoogle Scholar
  58. Torriani-Gorini A (1994) Introduction: the Pho regulon of Escherichia coli. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. American Society for Microbiology, Washington DC, pp 1–4Google Scholar
  59. Turło J, Gajzlerska W, Klimaszewska M, Król M, Dawidowski M (2012) Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis. Enzym Microb Technol 51:388–395CrossRefGoogle Scholar
  60. Wang Y, Cen XF, Zhao GP, Wang J (2012) Characterization of a new GlnR binding box in the promoter of amtB in Streptomyces coelicolor inferred a PhoP/GlnR competitive binding mechanism for transcriptional regulation of amtB. J Bacteriol 194(19):5237–5244CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang J, Liu H, Huang D, Jin L, Wang C, Wen J (2017) Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. Appl Microbiol Biotechnol 101(6):2447–2465CrossRefPubMedGoogle Scholar
  62. Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110:2717–2730CrossRefPubMedGoogle Scholar
  63. Yang R, Liu X, Wen Y, Song Y, Chen Z, Li J (2015) The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis. Appl Microbiol Biotechnol 99(24):10547–10557CrossRefPubMedGoogle Scholar
  64. Yao LL, Ye BC (2015) Reciprocal regulation of GlnR and PhoP in response to nitrogen and phosphate limitations in Saccharopolyspora erythraea. Appl Environ Microbiol 82:409–420CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zong G, Zhong C, Fu J, Qin R, Cao G (2017) Draft genome sequence of the tacrolimus-producing bacterium Streptomyces tsukubaensis F601. Genome Announc 5(20).  https://doi.org/10.1128/genomeA.00385-17

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Miriam Martínez-Castro
    • 1
    • 2
  • Carlos Barreiro
    • 1
    • 3
  • Juan F. Martín
    • 3
  1. 1.Instituto de Biotecnología de León, INBIOTECLeónSpain
  2. 2.Facultad de Ciencias de la SaludUniversidad Isabel I www.ui1.esBurgosSpain
  3. 3.Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y AmbientalesUniversidad de LeónLeónSpain

Personalised recommendations