Advertisement

Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development

  • Xiaoyu Wang
  • Xiaokang Zhao
  • Hao Wang
  • Xue Huang
  • Xiangke Duan
  • Yinzhong Gu
  • Nzungize Lambert
  • Ke Zhang
  • Zhenhao Kou
  • Jianping Xie
Applied microbial and cell physiology
  • 12 Downloads

Abstract

Bacterial toxin–antitoxin (TA) systems are emerging important regulators of multiple cellular physiological events and candidates for novel antibiotic targets. To explore the role of Mycobacterium tuberculosis function, unknown toxin gene Rv2872 was heterologously expressed in Mycobacterium smegmatis (MS_Rv2872). Upon induction, MS_Rv2872 phenotype differed significantly from the control, such as increased vancomycin resistance, retarded growth, cell wall, and biofilm structure. This phenotype change might result from the RNase activity of Rv2872 as purified Rv2872 toxin protein can cleave the products of several key genes involved in abovementioned phenotypes. In summary, toxin Rv2872 was firstly reported to be a endonuclease involved in antibiotic stress responses, cell wall structure, and biofilm development.

Keywords

Toxin–antitoxin (TA) Antimicrobial resistance Biofilm RNase 

Notes

Acknowledgements

We thank Professor Huang Hairong of Beijing Thoracic Hospital for providing the M. tuberculosis H37Rv genomic DNA and Professor Li Hongtao at School of Life Sciences, Southwest University, for the Western blot experiment support. This work was supported by National Natural Science Foundation (81371851, 81071316, 81271882, 81301394, 81172806, 81471563), National key R & D plan (2016YFC0502304), the Fundamental Research Funds for the Central Universities (XDJK2017D101, XDJK2017D100, XDJK2017D099) and Chongqing Municipal Education Science foundation (2015-JC-020).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any other authors.

Supplementary material

253_2018_9132_MOESM1_ESM.pdf (4.3 mb)
ESM 1 (PDF 4432 kb)

References

  1. Aakre CD, Phung TN, Huang D, Laub MT (2013) A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol Cell 52(5):617–628CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahidjo BA, Kuhnert D, Mckenzie JL, Machowski EE, Gordhan BG, Arcus V, Abrahams GL, Mizrahi V (2011) VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS One 6(6):e21738CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albrethsen J, Agner J, Piersma SR, Højrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin–antitoxin systems. Mol Cell Proteomics 12(5):1180–1191CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alexander DC, Jones JR, Tan T, Chen JM, Liu J (2004) PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem 279(18):18824–18833CrossRefPubMedGoogle Scholar
  5. Anantharaman V, Aravind L (2003) New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 4(12):1–15CrossRefGoogle Scholar
  6. Arcus VL, Mckenzie JL, Robson J, Cook GM (2011) The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Eng Des Sel 24(1–2):33–40CrossRefPubMedGoogle Scholar
  7. Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O, Gimenez G, Socolovschi C, Mège JL, Cambillau C, Raoult D (2011) Effect of Rickettsial toxin VapC on its eukaryotic host. PLoS One 6(10):4131–4142CrossRefGoogle Scholar
  8. Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Luisi BF, Salmond GPC (2012) Identification and classification of bacterial type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40(13):6158–6173CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boshoff HIM, Myers TG, Copp BR, Mcneil MR, Wilson MA, Barry CE (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279(38):40174–40184CrossRefPubMedGoogle Scholar
  10. Brown AK, Gerdes K, Winther KS, Brodersen DE (2013) VapC20 of Mycobacterium tuberculosis cleaves the Sarcin-Ricin loop of 23S rRNA. Nat Commun 4(7):2796PubMedGoogle Scholar
  11. Chen JM, German GJ, Alexander DC, Ren H, Tan T, Liu J (2006) Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188(2):633–641CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cook GM, Robson JR, Frampton RA, Mckenzie J, Przybilski R, Fineran PC, Arcus VL (2013) Ribonucleases in bacterial toxin-antitoxin systems. BB 1829(6–7):523Google Scholar
  13. Daisuke M, Yuki H, Takashi N, Tatsuhiko I, Hideyoshi H, Masahiko S (2013) Major T cell response to a mycolyl glycolipid is mediated by CD1c molecules in rhesus macaques. Infect Immun 81(1):311CrossRefGoogle Scholar
  14. Deng W, Li W, Zeng J, Zhao Q, Li C, Zhao Y, Xie J (2014) Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-u03baB signaling pathways. Cell Physiol Biochem 33(2):273–288CrossRefPubMedGoogle Scholar
  15. Duan X, Li Y, Du Q, Huang Q, Guo S, Xu M, Lin Y, Liu Z, Xie J (2015) Mycobacterium lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level. Sci RepGoogle Scholar
  16. Dye C, Brian G. Williams, Marcos A. Espinal, Raviglione MC (2002) Erasing the world’s slow stain strategies to beat multidrug-resistant tuberculosis. ScienceGoogle Scholar
  17. Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G (2010) Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38(11):3743–3759CrossRefPubMedPubMedCentralGoogle Scholar
  18. Frampton R, Aggio RBM, Villasbôas SG, Arcus VL, Cook GM (2012) Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 287(8):5340–5356CrossRefPubMedGoogle Scholar
  19. Gerdes K, Rasmussen PB, Molin S (1986) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. PNAS 83(10):3116–3120CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo Y, Quiroga C, Chen Q, Mcanulty MJ, Benedik MJ, Wood TK, Wang X (2014) RalR (a DNase) and RalA (a small RNA) form a type I toxin–antitoxin system in Escherichia coli. Nucleic Acids Res 42(10):6448–6462CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gupta A (2009) Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol Lett 290(1):45–53CrossRefPubMedGoogle Scholar
  22. Jaffé A, Ogura T, Hiraga S (1985) Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol 163(3):841–849PubMedPubMedCentralGoogle Scholar
  23. Jankute M, Cox JAG, Harrison J, Besra GS (2015) Assembly of the mycobacterial cell wall. Annu Rev Microbiol 69(1):405–423CrossRefPubMedGoogle Scholar
  24. Lemos JAC, Jr TAB, Abranches J, Burne RA (2005) Characteristics of Streptococcus mutans strains lacking the MazEF and RelBE toxin–antitoxin modules. FEMS Microbiol Lett 253(2):251–257CrossRefPubMedGoogle Scholar
  25. Lewis T, Nichols PD, Mcmeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43(2):107–116CrossRefPubMedGoogle Scholar
  26. Li Q, Zhou M, Fan X, Yan J, Li W, Xie J (2016) Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability. Sci Rep 6:28701CrossRefPubMedPubMedCentralGoogle Scholar
  27. Luo H, Zeng J, Huang Q, Liu M, Abdalla AE, Xie L, Wang H, Xie J (2015) Mycobacterium tuberculosis Rv1265 promotes mycobacterial intracellular survival and alters cytokine profile of the infected macrophage. J Biomol Struct Dyn 34(3):585Google Scholar
  28. Magnuson RD (2007) Hypothetical functions of toxin-antitoxin systems. J Bacteriol 189(17):6089–6092CrossRefPubMedPubMedCentralGoogle Scholar
  29. Matsumiya Y, Murata N, Tanabe E, Kubota K, Kubo M (2009) Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS One 5(5):e10672Google Scholar
  30. Melderen LV, Bast MSD (2009) Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet 5(3):135–139Google Scholar
  31. Miallau L, Faller M, Chiang J, Arbing M, Guo F, Cascio D, Eisenberg D (2009) Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. J Biol Chem 284(1):276–283CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. PNAS 80(15):4784–4788CrossRefPubMedPubMedCentralGoogle Scholar
  33. Parish T, Stoker NG (2009) Electroporation of mycobacteria. Methods Mol Biol 465(15):203–215PubMedGoogle Scholar
  34. Provvedi R, Boldrin F, Falciani F, Palù G, Manganelli R (2009) Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiol 155(Pt 4):1093–1102CrossRefGoogle Scholar
  35. Pullinger GD, Lax AJ (1992) A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions. Mol Microbiol 6(12):1631–1643Google Scholar
  36. Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5(12):e1000767CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64(4):515–524CrossRefPubMedGoogle Scholar
  38. Roberta Provvedi FB, Francesco Falciani, Giorgio Palù, Manganelli AR (2009) Global transcriptional response to vancomycin in Mycobacterium tuberculosis. MicrobiolGoogle Scholar
  39. Robson J, Mckenzie JL, Cursons R, Cook GM, Arcus VL (2009) The vapBC operon from Mycobacterium smegmatis is an autoregulated toxin–antitoxin module that controls growth via inhibition of translation. J Mol Biol 390(3):353–367CrossRefPubMedGoogle Scholar
  40. Sala A, Bordes P, Genevaux P (2014) Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 6(3):1002–1020.  https://doi.org/10.3390/toxins6031002 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sharp JD, Cruz JW, Raman S, Inouye M, Husson RN, Woychik NA (2012) Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J Biol Chem 287(16):12835–12847CrossRefPubMedPubMedCentralGoogle Scholar
  42. Soetaert K, Rens C, Wang XM, De BJ, Lanéelle MA, Laval F, Lemassu A, Daffé M, Bifani P, Fontaine V (2015) Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria. Antimicrob Agents Chemother 59(8):5057–5060CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP, Singh R (2015) MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 6:6059–6059CrossRefPubMedGoogle Scholar
  44. Van ML (2010) Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol 13(6):781–785CrossRefGoogle Scholar
  45. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sancheztorres V, Quiroga C, Zheng K, Herrmann T, Peti W (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8(10):855–861CrossRefPubMedPubMedCentralGoogle Scholar
  46. Winther KS, Gerdes K (2011) Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. PNAS 108(18):7403–7407CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zeng J, Deng W, Yang W, Luo H, Duan X, Xie L, Li P, Wang R, Fu T, Elgaili AA (2016) Mycobacterium tuberculosis Rv1152 is a novel GntR family transcriptional regulator involved in intrinsic vancomycin resistance and is a potential vancomycin adjuvant target. Sci RepGoogle Scholar
  48. Zhu L, Phadtare S, Nariya H, Ouyang M, Husson RN, Inouye M (2008) The mRNA interferases, MazF-mt3 and MazF-mt7 from Mycobacterium tuberculosis target unique pentad sequences in single-stranded RNA. Mol Microbiol 69(3):559–569CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life SciencesSouthwest UniversityChongqingChina

Personalised recommendations