Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 13, pp 5585–5598 | Cite as

Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil

  • Anna Berim
  • David R. Gang
Applied genetics and molecular biotechnology

Abstract

Numerous methoxylated flavonoids exhibit pronounced bioactivities. Their biotechnological production and diversification are therefore of interest to pharmaceutical and nutraceutical industries. We used a set of enzymes from sweet basil (Ocimum basilicum) to construct five strains of Saccharomyces cerevisiae producing 8- and/or 6-substituted, methoxylated flavones from their natural precursor apigenin. After identifying several growth parameters affecting the overall yields and flux, we applied optimized conditions and explored the ability of the generated strains to utilize alternative substrates. The yeast cells produced substantial amounts of 6-hydroxylated, methylated derivatives of naringenin and luteolin while the corresponding derivatives of flavonol kaempferol were only detected in trace amounts. Analysis of the intermediates and by-products of the different bioconversions suggested that the substrate specificity of both the hydroxylases and the flavonoid O-methyltransferases is imposing barriers on yields obtained with alternative substrates and highlighted steps that appear to represent bottlenecks en route to increasing the strains’ efficiencies. Additionally, analysis of flavonoid localization during fermentation revealed unequal distribution with strong intracellular accumulation of a number of methylated flavonoids and extracellular enrichment of several pathway intermediates. This work establishes a platform for the production of complex methoxylated flavonoids and discusses strategies for its improvement.

Keywords

(Poly)methoxylated flavonoids Saccharomyces cerevisiae Biotechnology Biodiversification Ring A hydroxylase Flavonoid O-methyltransferase 

Notes

Acknowledgements

AB would like to thank Dr. G. O. Berim (SUNY at Buffalo, NY) for help with statistical analysis.

Funding

This work was in part supported by the US Department of Energy Biological and Environmental Research Program (grant DE-SC0001728 to D.R.G.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals

Supplementary material

253_2018_9043_MOESM1_ESM.pdf (949 kb)
ESM 1 (PDF 948 kb)

References

  1. Amor IL-B, Hehn A, Guedon E, Ghedira K, Engasser J-M, Chekir-Ghedrira L, Ghoul M (2010) Biotransformation of naringenin to eriodictyol by Saccharomyces cerevisiae functionally expressing flavonoid 3′ hydroxylase. Nat Prod Commun 5:1893–1898PubMedGoogle Scholar
  2. Anarat-Cappillino G, Sattely ES (2014) The chemical logic of plant natural product biosynthesis. Curr Opin Plant Biol 19:51–58CrossRefPubMedGoogle Scholar
  3. Berim A, Gang DR (2013a) Characterization of two candidate flavone 8-O-methyltransferases suggests the existence of two potential routes to nevadensin in sweet basil. Phytochemistry 92:33–41CrossRefPubMedGoogle Scholar
  4. Berim A, Gang DR (2013b) The roles of a flavone 6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 288:1795–1805CrossRefPubMedGoogle Scholar
  5. Berim A, Gang DR (2016) Methoxylated flavones: occurrence, importance, biosynthesis. Phytochem Rev 15:363–390CrossRefGoogle Scholar
  6. Berim A, Hyatt DC, Gang DR (2012) A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil. Plant Physiol 160:1052–1069CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berim A, Park JJ, Gang DR (2014) Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. Plant J 80:385–395CrossRefPubMedGoogle Scholar
  8. Brazier-Hicks M, Edwards R (2013) Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metab Eng 16:11–20CrossRefPubMedGoogle Scholar
  9. Chemler JA, Yan YJ, Leonard E, Koffas MAG (2007) Combinatorial mutasynthesis of flavonoid analogues from acrylic acids in microorganisms. Org Lett 9:1855–1858CrossRefPubMedGoogle Scholar
  10. Choi K-Y, T-j K, Koh S-K, Roh C-H, Pandey BP, Lee N, Kim B-G (2009) A-ring ortho-specific monohydroxylation of daidzein by cytochrome P450s of Nocardia farcinica IFM10152. Biotechnol J 4:1586–1595CrossRefPubMedGoogle Scholar
  11. Chouhan S, Sharma K, Zha J, Guleria S, Koffas MAG (2017) Recent advances in the recombinant biosynthesis of polyphenols. Front Microbiol 8Google Scholar
  12. Conseil G, Decottignies A, Jault JM, Comte G, Barron D, Goffeau A, Di Pietro A (2000) Prenyl-flavonoids as potent inhibitors of the Pdr5p multidrug ABC transporter from Saccharomyces cerevisiae. Biochemistry 39:6910–6917CrossRefPubMedGoogle Scholar
  13. Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MAG (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Factories 16:10.  https://doi.org/10.1186/s12934-016-0623-3 CrossRefGoogle Scholar
  14. Eichenberger M, Lehka BJ, Folly C, Fischer D, Martens S, Simon E, Naesby M (2017) Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab Eng 39:80–89CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps—first come, first served? FEBS J 277:540–549CrossRefPubMedGoogle Scholar
  16. Eudes A, Benites VT, Wang G, Baidoo EEK, Lee TS, Keasling JD, Loque D (2015) Precursor-directed combinatorial biosynthesis of cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in Saccharomyces cerevisiae. PLoS One 10:e0138972.  https://doi.org/10.1371/journal.pone.0138972 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Grayer RJ, Bryan SE, Veitch NC, Goldstone FJ, Paton A, Wollenweber E (1996) External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry 43:1041–1047CrossRefGoogle Scholar
  18. Grayer RJ, Veitch NC, Kite GC, Price AM, Kokubun T (2001) Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum. Phytochemistry 56:559–567CrossRefPubMedGoogle Scholar
  19. Hovland P, Flick J, Johnston M, Sclafani RA (1989) Galactose as gratuitous inducer of GAL gene expression in yeasts growing on glucose. Gene 83:57–64CrossRefPubMedGoogle Scholar
  20. Jeon YM, Kim BG, Ahn JH (2009) Biological synthesis of 7-O-methyl apigenin from naringenin using Escherichia coli expressing two genes. J Microbiol Biotechnol 19:491–494CrossRefPubMedGoogle Scholar
  21. Jia X, Liu C, Song H, Ding M, Du J, Ma Q, Yuan Y (2016) Design, analysis and application of synthetic microbial consortia. Synth Syst Biotechnol 1:109–117CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jiang HX, Morgan JA (2004) Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnol Bioeng 85:130–137CrossRefPubMedGoogle Scholar
  23. Jiang HX, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969CrossRefPubMedPubMedCentralGoogle Scholar
  24. Johns NI, Blazejewski T, Gomes ALC, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jones JA, Toparlak OD, Koffas MAG (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59CrossRefPubMedGoogle Scholar
  26. Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA, Koffas MAG (2017) Complete biosynthesis of anthocyanins using E. coli polycultures. MBio 8:e00621–e00617.  https://doi.org/10.1128/mBio.00621-17 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kim DH, Kim BG, Lee Y, Ryu JY, Lim Y, Hur HG, Ahn JH (2005) Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol 119:155–162CrossRefPubMedGoogle Scholar
  28. Kim BG, Jung BR, Lee Y, Hur HG, Lim Y, Ahn JH (2006a) Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J Agric Food Chem 54:823–828CrossRefPubMedGoogle Scholar
  29. Kim JH, Kim BG, Park Y, Han JH, Lim Y, Ahn J-H (2006b) Production of 5,7-dihydroxy, 3′,4′,5′-trimethoxyflavone from 5,7,3′,4′,5′-pentahydroxyflavone using two O-methyltransferases expressed in Escherichia coli. Agric Chem Biotechnol 49:114–116Google Scholar
  30. Kim B-G, Lee YJ, Lee S, Lim Y, Cheong Y, Ahn J-H (2008) Altered regioselectivity of a poplar O-methyltransferase, POMT-7. J Biotechnol 138:107–111CrossRefPubMedGoogle Scholar
  31. Koirala N, Pandey RP, Parajuli P, Jung HJ, Sohng JK (2014) Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J Biotechnol 184:128–137CrossRefPubMedGoogle Scholar
  32. Koirala N, Thuan NH, Ghimire GP, Thang DV, Sohng JK (2016) Methylation of flavonoids: chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzym Microb Technol 86:103–116CrossRefGoogle Scholar
  33. Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJA, Pronk JT, Daran J-M (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155.  https://doi.org/10.1186/1475-2859-11-155 CrossRefGoogle Scholar
  34. Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J Biol Chem 276:1688–1695CrossRefPubMedGoogle Scholar
  35. Lee H, Kim BG, Ahn JH (2014) Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis. J Biotechnol 176:11–17CrossRefPubMedGoogle Scholar
  36. Lee H, Kim BG, Kim M, Ahn JH (2015) Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli. J Microbiol Biotechnol 25:1442–1448CrossRefPubMedGoogle Scholar
  37. Lee D, Park HL, Lee SW, Bhoo SH, Cho MH (2017) Biotechnological production of dimethoxyflavonoids using a fusion flavonoid O-methyltransferase possessing both 3′- and 7-O-methyltransferase activities. J Nat Prod 80:1467–1474CrossRefPubMedGoogle Scholar
  38. Leonard E, Yan YJ, Lim KH, Koffas MAG (2005) Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8241–8248CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leonard E, Chemler J, Lim KH, Koffas MAG (2006a) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biotechnol 70:85–91CrossRefPubMedGoogle Scholar
  40. Leonard E, Yan YJ, Koffas MAG (2006b) Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng 8:172–181CrossRefPubMedGoogle Scholar
  41. Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MAG (2015) Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol 81:6276–6284CrossRefPubMedPubMedCentralGoogle Scholar
  42. Malla S, Koffas MAG, Kazlauskas RJ, Kim BG (2012) Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol 78:684–694CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662CrossRefPubMedGoogle Scholar
  44. Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, Forster J, Nielsen J, Borodina I (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245:1645–1654CrossRefPubMedGoogle Scholar
  45. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3:207–214PubMedGoogle Scholar
  46. Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400CrossRefPubMedGoogle Scholar
  47. Schmidt A, Li C, Shi F, Jones AD, Pichersky E (2011) Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3 '/5 '- and 7/4 '-myricetin O-methyltransferases. Plant Physiol 155:1999–2009CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shimizu T, Lin F, Hasegawa M, Okada K, Nojiri H, Yamane H (2012) Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. J Biol Chem 287:19315–19325CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sordon S, Madej A, Poplonski J, Bartmanska A, Tronina T, Brzezowska E, Juszczyk P, Huszcza E (2016) Regioselective ortho-hydroxylations of flavonoids by yeast. J Agric Food Chem 64:5525–5530CrossRefPubMedGoogle Scholar
  50. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366CrossRefPubMedGoogle Scholar
  51. Trantas EA, Koffas MAG, Xu P, Ververidis F (2015) When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00007
  52. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:1214–1234CrossRefPubMedGoogle Scholar
  53. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463CrossRefPubMedGoogle Scholar
  54. Werner SR, Morgan JA (2009) Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. J Biotechnol 142:233–241CrossRefPubMedGoogle Scholar
  55. Williams IS, Chib S, Nuthakki VK, Gatchie L, Joshi P, Narkhede NA, Vishwakarma RA, Bharate SB, Saran S, Chaudhuri B (2017) Biotransformation of chrysin to baicalein: selective C6-hydroxylation of 5,7-dihydroxyflavone using whole yeast cells stably expressing human CYP1A1 enzyme. J Agric Food Chem 65:7440–7446CrossRefPubMedGoogle Scholar
  56. Willits MG, Giovanni M, Prata RTN, Kramer CM, De Luca V, Steffens JC, Graser G (2004) Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites. Phytochemistry 65:31–41CrossRefPubMedGoogle Scholar
  57. Yan YJ, Kohli A, Koffas MAG (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yan YJ, Li Z, Koffas MAG (2008) High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 100:126–140CrossRefPubMedGoogle Scholar
  59. Zhang H, Wang X (2016) Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng 37:114–121CrossRefPubMedGoogle Scholar
  60. Zhao Q, Cui M-Y, Levsh O, Yang D, Liu J, Li J, Hill L, Yang L, Hu Y, Weng J-K, Chen X-Y, Martin C (2018) Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4′-deoxyflavones in Scutellaria baicalensis. Mol Plant 11:135–148CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhou K, Qiao KJ, Edgar S, Stephanopoulos G (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377–383CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations