Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5033–5043 | Cite as

Recent advances in glyphosate biodegradation

  • Hui Zhan
  • Yanmei Feng
  • Xinghui Fan
  • Shaohua Chen


Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.


Glyphosate Biodegradation mechanism Carbon-phosphorus lyase Aminomethylphosphonic acid Bioremediation 



This study was partially funded by grants from the National Natural Science Foundation of China (31401763), the National Key Project for Basic Research (2015CB150600), Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306038), the Science and Technology Planning Project of Guangdong Province (2016A020210106, 2017A010105008) and Pearl River S&T Nova Program of Guangzhou (201506010006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34(5):458–479CrossRefPubMedGoogle Scholar
  2. Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res 23(19):18988–19001CrossRefGoogle Scholar
  3. Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51(2):432–434PubMedPubMedCentralGoogle Scholar
  4. Benslama O, Boulahrouf A (2016) High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics Data 8:61–66CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154(1):127–133CrossRefPubMedGoogle Scholar
  6. Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77(1):133–139CrossRefPubMedGoogle Scholar
  7. Bujacz B, Wieczorek P, Krzysko-Lupicka T, Golab Z, Lejczak B, Kavfarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61(8):2905–2910PubMedPubMedCentralGoogle Scholar
  8. Chen CM, Ye QZ, Zhu ZM, Wanner BL, Walsh CT (1990) Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 265(8):4461–4471PubMedGoogle Scholar
  9. Chen S, Lai KP, Li Y, Hu M, Zhang Y, Zeng Y (2011a) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483CrossRefPubMedGoogle Scholar
  10. Chen S, Yang L, Hu M, Liu J (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767CrossRefPubMedGoogle Scholar
  11. Chen S, Geng P, Xiao Y, Hu M (2012) Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl Microbiol Biotechnol 94:505–515CrossRefPubMedGoogle Scholar
  12. Dick RE, Quinn JP (1995) Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol Lett 134(2–3):177–182CrossRefGoogle Scholar
  13. Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61(3):219–224CrossRefPubMedGoogle Scholar
  14. Duke SO (2010) Glyphosate degradation in glyphosate-resistant and-susceptible crops and weeds. J Agric Food Chem 59(11):5835–5841CrossRefPubMedGoogle Scholar
  15. Duke SO, Powles SB (2008) Glyphosate: a once‐in‐a‐century herbicide. Pest Manage Sci 64(4):319–325Google Scholar
  16. Echavia GR, Matzusawa F, Negishi N (2009) Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 76(5):595–600CrossRefPubMedGoogle Scholar
  17. Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88(2):585–594CrossRefPubMedGoogle Scholar
  18. Ermakova IT, Shushkova TV, Sviridov AV, Zelenkova NF, Vinokurova NG, Baskunov BP, Leontievsky AA (2017) Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch Microbiol 199(5):665–675CrossRefPubMedGoogle Scholar
  19. Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, Tao K (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58(4):263–271CrossRefPubMedGoogle Scholar
  20. Firdous S, Iqbal S, Anwar S (2017a) Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere.
  21. Firdous S, Iqbal S, Anwar S, Jabeen H (2017b) Identification and analysis of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from glyphosate resistant Ochrobactrum intermedium Sq20. Pest Manage Sci 74:1184–1196. CrossRefGoogle Scholar
  22. Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y (2017) Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol 47(8):782–788CrossRefPubMedGoogle Scholar
  23. Gill JPK, Sethi N, Mohan A (2016) Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environ Chem Lett 15(1):85–100CrossRefGoogle Scholar
  24. Grandcoin A, Piel S, Baures E (2017) Amino methyl phosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res 117:187–197CrossRefPubMedGoogle Scholar
  25. Guilherme S, Santos MA, Gaivao I, Pacheco M (2014) DNA and chromosomal damage induced in fish (Anguilla anguilla L.) by aminomethylphosphonic acid (AMPA)—the major environmental breakdown product of glyphosate. Environl Sci Pollut Res 21(14):8730–8739CrossRefGoogle Scholar
  26. Hadi F, Mousavi A, Salmanian AH, Akbari Noghabi K (2012) Glyphosate tolerance in transgenic canola by a modified glyphosate oxidoreductase (gox) gene. Prog Biol Sci 2(1):50–58Google Scholar
  27. Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH (2013) New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Heal B 48(3):208–213CrossRefGoogle Scholar
  28. Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H (2010) Relevance of urban glyphosate use for surface water quality. Chemosphere 81(3):422–429CrossRefPubMedGoogle Scholar
  29. Haslam E (2014) The shikimate pathway: biosynthesis of natural products series. Elsevier, New YorkGoogle Scholar
  30. Hovejensen B, Mcsorley FR, Zechel DL (2011) Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway. J Am Chem Soc 133(10):3617–3624CrossRefGoogle Scholar
  31. Hove-Jensen B, Rosenkrantz TJ, Zechel DL, Willemoës M (2010) Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli. J Bacteriol 192(1):370–374CrossRefPubMedGoogle Scholar
  32. Hove-Jensen B, Zechel DL, Jochimsen B (2014) Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Res 78(1):176–197CrossRefGoogle Scholar
  33. Jacob G, Garbow J, Hallas L, Kimack N, Kishore G, Schaefer J (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54(12):2953–2958PubMedPubMedCentralGoogle Scholar
  34. Kamat SS, Raushel FM (2013) The enzymatic conversion of phosphonates to phosphate by bacteria. Curr Opin Chem Biol 17(4):589–596CrossRefPubMedGoogle Scholar
  35. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 7:805187Google Scholar
  36. Kishore G, Jacob GS (1987) Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J Biol Chem 262(25):12164–12168PubMedGoogle Scholar
  37. Klimek M, Lejczak B, Kafarski P, Forlani G (2001) Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest Manag Sci 57(9):815–821CrossRefPubMedGoogle Scholar
  38. Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV, Chernyshova MP, Makarov OE, Fedorov EE, Turkovskaya OV (2014) Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res 169(1):99–105CrossRefPubMedGoogle Scholar
  39. Krzyśko-Łupicka T, Orlik A (1997) The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 34(12):2601–2605CrossRefGoogle Scholar
  40. Krzyśko-Lupicka T, Strof W, Kubś K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48(4):549–552CrossRefPubMedGoogle Scholar
  41. Kwiatkowska M, Huras B, Bukowska B (2014) The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro). Pestic Biochem Phys 109:34–43CrossRefGoogle Scholar
  42. Lerbs W, Stock M, Parthier B (1990) Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch Microbiol 153(2):146–150CrossRefGoogle Scholar
  43. Li H, Joshi SR, Jaisi DP (2016) Degradation and isotope source tracking of glyphosate and aminomethylphosphonic acid. J Agric Food Chem 64(3):529–538CrossRefPubMedGoogle Scholar
  44. Liu CM, McLean P, Sookdeo C, Cannon F (1991) Degradation of the herbicide glyphosate by members of the family rhizobiaceae. Appl Environ Microbiol 57(6):1799–1804PubMedPubMedCentralGoogle Scholar
  45. Liu J, Chen S, Ding J, Xiao Y, Han H, Zhong G (2015) Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Appl Microbiol Biotechnol 99(24):10839–10851CrossRefPubMedGoogle Scholar
  46. Lund-HØie K, Friestad HO (1986) Photodegradation of the herbicide glyphosate in water. Bull Environ Contam Toxicol 36(1):723–729CrossRefPubMedGoogle Scholar
  47. Lupi L, Miglioranza KS, Aparicio VC, Marino D, Bedmar F, Wunderlin DA (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694CrossRefPubMedGoogle Scholar
  48. Manassero A, Passalia C, Negro AC, Cassano AE, Zalazar CS (2010) Glyphosate degradation in water employing the H2O2/UVC process. Water Res 44(13):3875–3882CrossRefPubMedGoogle Scholar
  49. McAuliffe KS, Hallas LE, Kulpa CF (1990) Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J Ind Microbiol Biotechnol 6(3):219–221Google Scholar
  50. Mercurio P, Flores F, Mueller JF, Carter S, Negri AP (2014) Glyphosate persistence in seawater. Mar Pollut Bull 85(2):385–390CrossRefPubMedGoogle Scholar
  51. Mesnage R, Defarge N, Spiroux de Vendomois J, Seralini GE (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 84:133–153CrossRefPubMedGoogle Scholar
  52. Metcalf WW, Wanner BL (1993) Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 129(1):27–32CrossRefPubMedGoogle Scholar
  53. Moore JK, Braymer HD, Larson AD (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol 46(2):316–320PubMedPubMedCentralGoogle Scholar
  54. Newton M, Horner LM, Cowell JE, White DE, Cole EC (1994) Dissipation of glyphosate and aminomethylphosphonic acid in north American forests. J Agric Food Chem 42(8):1795–1802CrossRefGoogle Scholar
  55. Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm 10(1):3–12CrossRefGoogle Scholar
  56. Norgaard T, Moldrup P, Ferré TPA, Olsen P, Rosenbom AE, de Jonge LW (2014) Leaching of glyphosate and aminomethylphosphonic acid from an agricultural field over a twelve-year period. Vadose Zone J 13(10):10–13CrossRefGoogle Scholar
  57. Obojska A, Lejczak B, Kubrak M (1999) Degradation of phosphonates by Streptomycete isolates. Appl Microbiol Biotechnol 51(6):872–876CrossRefPubMedGoogle Scholar
  58. Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68(4):2081–2084CrossRefPubMedPubMedCentralGoogle Scholar
  59. Peñaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61(2):538–543PubMedPubMedCentralGoogle Scholar
  60. Pipke R, Amrhein N (1988a) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54(5):1293–1296PubMedPubMedCentralGoogle Scholar
  61. Pipke R, Amrhein N (1988b) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54(11):2868–2870PubMedPubMedCentralGoogle Scholar
  62. Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987a) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. FEBS J 165(2):267–273Google Scholar
  63. Pipke R, Schulz A, Amrhein N (1987b) Uptake of glyphosate by an Arthrobacter sp. Appl Environ Microbiol 53(5):974PubMedPubMedCentralGoogle Scholar
  64. Quinn JP, Peden JM, Dick RE (1989) Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol 31(3):283–287CrossRefGoogle Scholar
  65. Santos-beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Micribiol 6:402Google Scholar
  66. Selvapandiyan A, Bhatnagar RK (1994) Isolation of a glyphosate-metabolising Pseudomonas: detection, partial purification and localisation of carbon-phosphorus lyase. Appl Microbiol Biotechnol 40(6):876–882CrossRefGoogle Scholar
  67. Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22Google Scholar
  68. Shinabarger DL, Braymer HD (1986) Glyphosate catabolism by Pseudomonas sp. strain PG2982. J Bacteriol 168(2):702–707CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shushkova T, Ermakova I, Leontievsky A (2010) Glyphosate bioavailability in soil. Biodegradation 21(3):403–410CrossRefPubMedGoogle Scholar
  70. Sihtmäe M, Blinova I, Künnis-Beres K, Kanarbik L, Heinlaan M, Kahru A (2013) Ecotoxicological effects of different glyphosate formulations. Appl Soil Ecol 72:215–224CrossRefGoogle Scholar
  71. Sviridov A (2012) Enzyme systems of organophosphonate catabolism of soil bacteria Achromobacter sp. and Ochrobactrum anthropi GPK3. PhD thesis (in Russian). Pushchinoa 152:120–132Google Scholar
  72. Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93(2):787–796CrossRefPubMedGoogle Scholar
  73. Sviridov A, Shushkova T, Ermakova I, Ivanova E, Leontievsky A (2014) Glyphosate: safety risks, biodegradation, and bioremediation. Current environmental issues and challenges. Springer, Dordrecht, pp 183–195Google Scholar
  74. Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA (2015) Microbial degradation of glyphosate herbicides (review). Appl Biochem Microbiol 51(2):188–195CrossRefGoogle Scholar
  75. Talbot HW, Johnson LM, Munnecke DM (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol 10(5):255–259CrossRefGoogle Scholar
  76. Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2014) Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere 95:455–463CrossRefPubMedGoogle Scholar
  77. Van Stempvoort DR, Spoelstra J, Senger ND, Brown SJ, Post R, Struger J (2016) Glyphosate residues in rural groundwater, Nottawasaga River watershed, Ontario, Canada. Pest Manag Sci 72(10):1862–1872CrossRefPubMedGoogle Scholar
  78. Villarreal-Chiu JF, Quinn JP, McGrath JW (2012) The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wackett LP, Shames SL, Venditti CP, Walsh CT (1987) Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. J Bacteriol 169(2):710–717CrossRefPubMedPubMedCentralGoogle Scholar
  80. Waiman CV, Avena MJ, Garrido M, Fernández Band B, Zanini GP (2012) A simple and rapid spectrophotometric method to quantify the herbicide glyphosate in aqueous media. Application to adsorption isotherms on soils and goethite. Geoderma 170:154–158CrossRefGoogle Scholar
  81. Wang S, Seiwert B, Kastner M, Miltner A, Schaffer A, Reemtsma T, Yang Q, Nowak KM (2016) (Bio)degradation of glyphosate in water-sediment microcosms—a stable isotope co-labeling approach. Water Res 99:91–100CrossRefPubMedGoogle Scholar
  82. Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99:2849–2859CrossRefPubMedGoogle Scholar
  83. Xu X, Ji F, Fan Z, He L (2011) Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/TiO2 under solar light. Int J Environ Res Public Health 8(4):1258–1270CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yu XM, Yu T, Yin GH, Dong QL, An M, Wang HR, Ai CX (2015) Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res 14(4):14717–14730CrossRefPubMedGoogle Scholar
  85. Zhan H, Wang H, Liao L, Feng Y, Fan X, Zhang L, Chen S (2018) Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14. Front Microbiol 9:98CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhang C, Hu X, Luo J, Wu Z, Wang L, Li B, Wang Y, Sun G (2015) Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules 20(1):1161–1175CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Zhan
    • 1
  • Yanmei Feng
    • 1
  • Xinghui Fan
    • 1
  • Shaohua Chen
    • 1
  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouPeople’s Republic of China

Personalised recommendations