Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 13, pp 5505–5518 | Cite as

Increasing l-threonine production in Escherichia coli by engineering the glyoxylate shunt and the l-threonine biosynthesis pathway

  • Hui Zhao
  • Yu Fang
  • Xiaoyuan Wang
  • Lei Zhao
  • Jianli Wang
  • Ye Li
Biotechnological products and process engineering
  • 188 Downloads

Abstract

l-threonine is an important amino acid that can be added in food, medicine, or feed. Here, the influence of glyoxylate shunt on an l-threonine producing strain Escherichia coli TWF001 has been studied. The gene iclR was deleted, and the native promoter of the aceBA operon was replaced by the trc promoter in the chromosome of TWF001, the resulting strainTWF004 could produce 0.39 g l-threonine from1 g glucose after 36-h flask cultivation. Further replacing the native promoter of aspC by the trc promoter in the chromosome of TWF004 resulted in the strain TWF006. TWF006 could produce 0.42 g l-threonine from 1 g glucose after 36-h flask cultivation. Three key genes in the biosynthetic pathway of l-threonine, thrA * (a mutated thrA), thrB, and thrC were overexpressed in TWF006, resulting the strain TWF006/pFW01-thrA * BC. TWF006/pFW01-thrA * BC could produce 0.49 g l-threonine from 1 g glucose after 36-h flask cultivation. Next, the genes asd, rhtA, rhtC, or thrE were inserted into the plasmid TWF006/pFW01-thrA * BC, and TWF006 was transformed with these plasmids, resulting the strains TWF006/pFW01-thrA * BC-asd, TWF006/pFW01-thrA * BC-rhtA, TWF006/pFW01-thrA * BC-rhtC, and TWF006/pFW01-thrA * BC-thrE, respectively. These four strains could produce more l-threonine than the control strain, and the highest yield was produced by TWF006/pFW01-thrA * BC-asd; after 36-h flask cultivation, TWF006/pFW01-thrA * BC-asd could produce 15.85 g/l l-threonine, i.e., 0.53 g l-threonine per 1 g glucose, which is a 70% increase relative to the control strain TWF001. The results suggested that the combined engineering of glyoxylate shunt and l-threonine biosynthesis pathway could significantly increase the l-threonine production in E. coli.

Keywords

l-threonine production Escherichia coli Aspartate aminotransferase Glyoxylate shunt 

Notes

Funding information

This study was supported by the Collaborative Innovation Center of Jiangsu Modern Industrial Fermentation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Amann E, Ochs B, Abel K-J (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69(2):301–315.  https://doi.org/10.1016/0378-1119(88)90440-4 CrossRefPubMedGoogle Scholar
  2. Chao Y-P, Lo T-E, Luo N-S (2000) Selective production of L-aspartic acid and L-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli. Enzym Microbiol Technol 27(1):19–25.  https://doi.org/10.1016/S0141-0229(00)00149-6 CrossRefGoogle Scholar
  3. Chen N, Huang J, Feng ZB, Yu L, Xu QY, Wen TY (2009) Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Appl Biochem Biotechnol 158(3):595–604.  https://doi.org/10.1007/s12010-008-8385-y CrossRefPubMedGoogle Scholar
  4. Diesveld R, Tietze N, Furst O, Reth A, Bathe B, Sahm H, Eggeling L (2009) Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol 16(3–4):198–207.  https://doi.org/10.1159/000142530 CrossRefPubMedGoogle Scholar
  5. Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 29(1):11–23.  https://doi.org/10.1016/j.biotechadv.2010.07.009 CrossRefPubMedGoogle Scholar
  6. Dong X, Quinn PJ, Wang X (2012) Microbial metabolic engineering for L-threonine production. In: Wang X, Chen J, Quinn P (eds) Reprog Microbiol Metab Path. Springer Netherlands, Dordrecht, pp 283–302Google Scholar
  7. Dong X, Zhao Y, Hu J, Li Y, Wang X (2016) Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzym Microbiol Technol 93-94:70–78.  https://doi.org/10.1016/j.enzmictec.2016.07.013 CrossRefGoogle Scholar
  8. Hashimoto S-i (2017) Discovery and history of amino acid fermentation. In: Yokota A, Ikeda M (eds) Amino acid ferment. Springer Japan, Tokyo, pp 15–34Google Scholar
  9. Jang C-W, Magnuson T (2013) A novel selection marker for efficient DNA cloning and recombineering in E. coli. PLoS One 8(2):e57075.  https://doi.org/10.1371/journal.pone.0057075 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514.  https://doi.org/10.1128/AEM.04023-14 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kőrös Á, Varga Z, Molnár-Perl I (2008) Simultaneous analysis of amino acids and amines as their o-phthalaldehyde-ethanethiol-9-fluorenylmethyl chloroformate derivatives in cheese by high-performance liquid chromatography. J Chromatogr A 1203(2):146–152.  https://doi.org/10.1016/j.chroma.2008.07.035 CrossRefPubMedGoogle Scholar
  12. Kruse D, Krämer R, Eggeling L, Rieping M, Pfefferle W, Tchieu J, Chung Y, Saier M, Burkovski A (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59(2):205–210.  https://doi.org/10.1007/s00253-002-0987-7 PubMedCrossRefGoogle Scholar
  13. Kumari S, Beatty CM, Browning DF, Busby SJW, Simel EJ, Hovel-Miner G, Wolfe AJ (2000) Regulation of acetyl coenzyme a synthetase in Escherichia coli. J Bacteriol 182(15):4173–4179CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lee J-H, Lee D-E, Lee B-U, Kim H-S (2003) Global analyses of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J Bacteriol 185(18):5442–5451. https://doi.org/10.1128/JB.185.18.5442-5451.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lee M-H, Lee H-W, Park J-H, Ahn J-O, Jung J-K, Hwang Y-I (2006) Improved l-threonine production of Escherichia coli mutant by optimization of culture conditions. J Biosci Bioeng 101(2):127–130.  https://doi.org/10.1263/jbb.101.127 CrossRefPubMedGoogle Scholar
  16. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3.  https://doi.org/10.1038/msb4100196
  17. Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Factories 8:2.  https://doi.org/10.1186/1475-2859-8-2 CrossRefGoogle Scholar
  18. Lee JH, Jung S-C, Bui LM, Kang KH, Song J-J, Kim SC (2013) Improved production of l-threonine in Escherichia coli by use of a DNA scaffold system. ApplEnviron Microbiol 79(3):774–782.  https://doi.org/10.1128/AEM.02578-12 CrossRefGoogle Scholar
  19. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8.  https://doi.org/10.1007/s00253-005-0155-y CrossRefPubMedGoogle Scholar
  20. Li N, Zhang B, Chen T, Wang Z, Tang YJ, Zhao X (2013) Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. J Ind Microbiol Biotechnol 40(12):1461–1475.  https://doi.org/10.1007/s10295-013-1342-y CrossRefPubMedGoogle Scholar
  21. Li N, Zhang B, Wang Z, Tang YJ, Chen T, Zhao X (2014) Engineering Escherichia coli for fumaric acid production from glycerol. Bioresour Technol 174:81–87.  https://doi.org/10.1016/j.biortech.2014.09.147 CrossRefPubMedGoogle Scholar
  22. Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5(11):1299–1307.  https://doi.org/10.1021/acssynbio.6b00052 CrossRefPubMedGoogle Scholar
  23. Lin F, Chen Y, Levine R, Lee K, Yuan Y, Lin XN (2013) Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering. PLoS One 8(10):e78595.  https://doi.org/10.1371/journal.pone.0078595 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu F, Qimuge, Hao J, Yan H, Bach T, Fan L, Morigen (2014) AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle. PLoS One 9(3):e92229.  https://doi.org/10.1371/journal.pone.0092229 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu Y, Li Q, Zheng P, Zhang Z, Liu Y, Sun C, Cao G, Zhou W, Wang X, Zhang D, Zhang T, Sun J, Ma Y (2015) Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microb Cell Factories 14:121.  https://doi.org/10.1186/s12934-015-0311-8 CrossRefGoogle Scholar
  26. Liu M, Ding Y, Chen H, Zhao Z, Liu H, Xian M, Zhao G (2017) Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21 (DE3) through iclR and arcA deletion. BMC Microbiol 17:10.  https://doi.org/10.1186/s12866-016-0913-2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  28. Livshits VA, Zakataeva NP, Aleshin VV, Vitushkina MV (2003) Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol 154(2):123–135.  https://doi.org/10.1016/s0923-2508(03)00036-6 CrossRefPubMedGoogle Scholar
  29. Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X (2016) Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng 36:10–18.  https://doi.org/10.1016/j.ymben.2016.02.013 CrossRefPubMedGoogle Scholar
  30. Nolden L, Farwick M, Krämer R, Burkovski A (2001) Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201(1):91–98.  https://doi.org/10.1111/j.1574-6968.2001.tb10738.x CrossRefPubMedGoogle Scholar
  31. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4(2):206–223.  https://doi.org/10.1038/nprot.2008.227 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Skorokhodova AY, Gulevich AY, Morzhakova AA, Shakulov RS, Debabov VG (2013) Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media. Biotechnol Lett 35(4):577–583.  https://doi.org/10.1007/s10529-012-1108-z CrossRefPubMedGoogle Scholar
  33. Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110(7):2025–2034.  https://doi.org/10.1002/bit.24868 CrossRefPubMedGoogle Scholar
  34. Song CW, Lee J, Ko YS, Lee SY (2015) Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30:121–129.  https://doi.org/10.1016/j.ymben.2015.05.005 CrossRefPubMedGoogle Scholar
  35. Wang J, Cheng LK, Chen N (2014) High-level production of L-threonine by recombinant Escherichia coli with combined feeding strategies. Biotechnol BiotechnolEquip 28(3):495–501.  https://doi.org/10.1080/13102818.2014.927682 CrossRefGoogle Scholar
  36. Xie X, Liang Y, Liu H, Liu Y, Xu Q, Zhang C, Chen N (2014) Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli. J Ind Microbiol Biotechnol 41(6):1007–1015.  https://doi.org/10.1007/s10295-014-1436-1 CrossRefPubMedGoogle Scholar
  37. Xu Y, Liu Y, Li F, Cao G, Zheng P, Sun J, Wen J, Zhang D (2017) Identification of a new gene yecC involved in threonine export in Escherichia coli. FEMS Microbiol Lett 364(17):fnx174.  https://doi.org/10.1093/femsle/fnx174 CrossRefGoogle Scholar
  38. Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47(1):183–194.  https://doi.org/10.1046/j.1365-2958.2003.03287.x CrossRefPubMedGoogle Scholar
  39. Yuzbashev TV, Vybornaya TV, Larina AS, Gvilava IT, Voyushina NE, Mokrova SS, Yuzbasheva EY, Manukhov IV, Sineoky SP, Debabov VG (2013) Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. Appl Biochem Microbiol 49(9):723–742.  https://doi.org/10.1134/s0003683813090056 CrossRefGoogle Scholar
  40. Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA (1999) The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452(3):228–232.  https://doi.org/10.1016/S0014-5793(99)00625-0 CrossRefPubMedGoogle Scholar
  41. Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187(3):980–990.  https://doi.org/10.1128/JB.187.3.980-990.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang Y, Meng Q, Ma H, Liu Y, Cao G, Zhang X, Zheng P, Sun J, Zhang D, Jiang W, Ma Y (2015a) Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microb Cell Factories 14:86.  https://doi.org/10.1186/s12934-015-0275-8 CrossRefGoogle Scholar
  43. Zhang T, Wang Z, Deng L, Tan T, Wang F, Yan Y (2015b) Pull-in urea cycle for the production of fumaric acid in Escherichia coli. Appl Microbiol Biotechnol 99(12):5033–5044.  https://doi.org/10.1007/s00253-015-6556-7 CrossRefPubMedGoogle Scholar
  44. Zheng J, Yates SP, Jia Z (2012) Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK. Philos Trans R Soc Lond B Biol Sci 367(1602):2656–2668.  https://doi.org/10.1098/rstb.2011.0426 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhu L, Lin J, Ma J, Cronan JE, Wang H (2010) Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 54(2):689–698.  https://doi.org/10.1128/AAC.01152-09 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Zhao
    • 1
    • 2
  • Yu Fang
    • 1
    • 2
  • Xiaoyuan Wang
    • 1
    • 2
    • 3
  • Lei Zhao
    • 1
    • 3
  • Jianli Wang
    • 1
    • 3
  • Ye Li
    • 1
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  3. 3.International Joint Laboratory on Food SafetyJiangnan UniversityWuxiChina

Personalised recommendations