Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 13, pp 5569–5583 | Cite as

Characterization of a thermotolerant ROK-type mannofructokinase from Streptococcus mitis: application to the synthesis of phosphorylated sugars

  • Carine Vergne-Vaxelaire
  • Aline Mariage
  • Jean-Louis Petit
  • Aurélie Fossey-Jouenne
  • Christine Guérard-Hélaine
  • Ekaterina Darii
  • Adrien Debard
  • Stessy Nepert
  • Virginie Pellouin
  • Marielle Lemaire
  • Anne Zaparucha
  • Marcel Salanoubat
  • Véronique de BerardinisEmail author
Biotechnologically relevant enzymes and proteins
  • 200 Downloads

Abstract

Most of the “repressor, open reading frame, kinase” (ROK) proteins already characterized so far, and exhibiting a kinase activity, take restrictedly d-glucose as substrate. By exploring the sequenced bacterial diversity, 61 ATP-dependent kinases belonging to the ROK family have been identified and experimentally assayed for the phosphorylation of hexoses. These kinases were mainly found to be thermotolerant and highly active toward d-mannose and d-fructose with notable activities toward d-tagatose. Among them, the ATP-dependent kinase from the mesophile Streptococcus mitis (named ScrKmitis) was biochemically characterized and its substrate spectrum further studied. This enzyme possessed impressive catalytic efficiencies toward d-mannose and d-fructose of 1.5 106 s−1 M−1 and 2.7 105 s−1 M−1, respectively, but also significant ones toward d-tagatose (3.5 102 s−1 M−1) and the unnatural monosaccharides d-altrose (1.1 104 s−1 M−1) and d-talose (3.4 102 s−1 M−1). Specific activities measured for all hexoses showed a high stereopreference for d- over l-series. As proof of concept, 8 hexoses were phosphorylated in moderate to good yields, some of them described for the first time like l-sorbose-5-phosphate unusually phosphorylated in position 5. Its thermotolerance, its wide pH tolerance (from 7 to 10), and temperature range (> 85% activity between 40 and 70 °C) open the way to applications in the enzymatic synthesis of monophosphorylated hexoses.

Keywords

Hexokinase Fructokinase Thermotolerance ROK family Phosphorylated sugars Promiscuity 

Notes

Acknowledgments

The authors would like to thank Jean-François Gallard (ICSN, France) for 1H-31P NMR experiments, Olek Maciejak and Marie-Jeanne Clément (SABNP, INSERM U 1204—Université d’Evry Val-d’Essonne, Université Paris-Saclay, France) for assistance in 1H and 13C NMR experiments, the Region Ile de France for financial support of the 600 MHz NMR spectrometer, Alain Perret for fruitful discussions and proofreading of the manuscript, and Christine Pelle and Peggy Sirvain for nickel affinity chromatography purification of ScrKmitis. We thank C. Rivoire (the Swiss-Prot Group at the SIB Swiss Institute of Bioinformatics) for earlier Uniprot identifier assignments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9018_MOESM1_ESM.pdf (2.5 mb)
ESM 1 (PDF 2580 kb)

References

  1. Bastard K, Smith AA, Vergne-Vaxelaire C, Perret A, Zaparucha A, De Melo-Minardi R, Mariage A, Boutard M, Debard A, Lechaplais C, Pelle C, Pellouin V, Perchat N, Petit JL, Kreimeyer A, Medigue C, Weissenbach J, Artiguenave F, De Berardinis V, Vallenet D, Salanoubat M (2014) Revealing the hidden functional diversity of an enzyme family. Nat Chem Biol 10(1):42–49.  https://doi.org/10.1038/nchembio.1387 CrossRefPubMedGoogle Scholar
  2. Bornscheuer UT (2016) Biocatalysis: successfully crossing boundaries. Angew Chem Int Ed Eng 55(14):4372–4373.  https://doi.org/10.1002/anie.201510042 CrossRefGoogle Scholar
  3. Charmantray F, Hélaine V, Legeret B, Hecquet L (2009) Preparative scale enzymatic synthesis of d-sedoheptulose-7-phosphate from β-hydroxypyruvate and d-ribose-5-phosphate. J Mol Catal B Enzym 57(1–4):6–9.  https://doi.org/10.1016/j.molcatb.2008.06.005 CrossRefGoogle Scholar
  4. Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454.  https://doi.org/10.1016/j.biotechadv.2015.02.014 CrossRefPubMedGoogle Scholar
  5. Conejo MS, Thompson SM, Miller BG (2010) Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family. J Mol Evol 70(6):545–556.  https://doi.org/10.1007/s00239-010-9351-1 CrossRefPubMedGoogle Scholar
  6. Davids T, Schmidt M, Böttcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17(2):215–220.  https://doi.org/10.1016/j.cbpa.2013.02.022 CrossRefPubMedGoogle Scholar
  7. de Berardinis V, Guérard-Hélaine C, Darii E, Bastard K, Hélaine V, Mariage A, Petit JL, Poupard N, Sánchez-Moreno I, Stam M, Gefflaut T, Salanoubat S, Lemaire M (2017) Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate. Green Chem 19:519–526.  https://doi.org/10.1039/C6GC02652D CrossRefGoogle Scholar
  8. Desvergnes S, Courtiol-Legourd S, Daher R, Dabrowski M, Salmon L, Therisod M (2012) Synthesis and evaluation of malonate-based inhibitors of phosphosugar-metabolizing enzymes: class II fructose-1,6-bis-phosphate aldolases, type I phosphomannose isomerase, and phosphoglucose isomerase. Bioorg Med Chem 20(4):1511–1520.  https://doi.org/10.1016/j.bmc.2011.12.050 CrossRefPubMedGoogle Scholar
  9. Dorr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B (2003) The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, two alternatives for glucose phosphorylation in Archaea. J Biol Chem 278(21):18744–18753.  https://doi.org/10.1074/jbc.M301914200 CrossRefPubMedGoogle Scholar
  10. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123.  https://doi.org/10.1016/j.copbio.2014.04.003 CrossRefPubMedGoogle Scholar
  11. Franke FP, Kapuscinski M, Lyndon P (1985) Synthesis and n.m.r. characterization of intermediates in the l-type pentose phosphate cycle. Carbohydr Res 143:69–76.  https://doi.org/10.1016/S0008-6215(00)90696-7 CrossRefGoogle Scholar
  12. Guérard-Hélaine C, Debacker M, Clapés P, Szekrenyi A, Hélaine V, Lemaire M (2014) Efficient biocatalytic processes for highly valuable terminally phosphorylated C5 to C9 d-ketoses. Green Chem 16(3):1109–1113.  https://doi.org/10.1039/c3gc42140f CrossRefGoogle Scholar
  13. Guérard-Hélaine C, de Berardinis V, Besnard-Gonnet M, Darii E, Debacker M, Debard A, Fernandes C, Hélaine V, Mariage A, Pellouin V, Perret A, Petit J-L, Sancelme M, Lemaire M, Salanoubat M (2015) Genome mining for innovative biocatalysts: new dihydroxyacetone aldolases for the chemist’s toolbox. ChemCatChem 7(12):1871–1879.  https://doi.org/10.1002/cctc.201500014 CrossRefGoogle Scholar
  14. Hansen T, Reichstein B, Schmid R, Schönheit P (2002) The first Archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J Bacteriol 184(21):5955–5965.  https://doi.org/10.1128/jb.184.21.5955-5965.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113(2):313–317.  https://doi.org/10.1016/0003-2697(81)90082-8 CrossRefPubMedGoogle Scholar
  16. Hélaine V, Mahdi R, Sudhir Babu GV, de Berardinis V, Wohlgemuth R, Lemaire M, Guérard-Hélaine C (2015) Straightforward synthesis of terminally phosphorylated L-sugars via multienzymatic cascade reactions. Adv Synth Catal 357(8):1703–1708.  https://doi.org/10.1002/adsc.201500190 CrossRefGoogle Scholar
  17. Holmes KC, Sander C, Valencia A (1993) A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol 3(2):53–59.  https://doi.org/10.1016/0962-8924(93)90161-S CrossRefPubMedGoogle Scholar
  18. Howe K, Bateman A, Durbin R (2002) QuickTree: building huge neighbour-joining trees of protein sequences. Bioinformatics 18(11):1546–1547.  https://doi.org/10.1093/bioinformatics/18.11.1546 CrossRefPubMedGoogle Scholar
  19. Jaworek D, Welsch J (1985) Adenosine 5-diphosphate and adenosine 5-monophosphate. In: Bergmeyer HU, Bergmeyer J, Graßl M (eds) Methods Enz Anal, vol 7, pp 365–370Google Scholar
  20. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  21. Koerner Jr TA, Voll RJ, Cary LW, Younathan ES (1980) Carbon-13 nuclear magnetic resonance studies and anomeric composition of ketohexose phosphates in solution. Biochemistry 19(12):2795–2801.  https://doi.org/10.1021/bi00553a040 CrossRefGoogle Scholar
  22. Kreimeyer A, Perret A, Lechaplais C, Vallenet D, Medigue C, Salanoubat M, Weissenbach J (2007) Identification of the last unknown genes in the fermentation pathway of lysine. J Biol Chem 282(10):7191–7197.  https://doi.org/10.1074/jbc.M609829200 CrossRefPubMedGoogle Scholar
  23. Kreuzer P, Gartner D, Allmansberger R, Hillen W (1989) Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol 7(171):3840–3845.  https://doi.org/10.1021/bi00553a040 CrossRefGoogle Scholar
  24. Larion M, Moore LB, Thompson SM, Miller BG (2007) Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity. Biochemistry 46(47):13564–13572.  https://doi.org/10.1021/bi700924d CrossRefPubMedGoogle Scholar
  25. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245.  https://doi.org/10.1093/nar/gkw290 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Littlechild JA (2015) Enzymes from extreme environments and their industrial applications. Front Bioeng Biotechnol 3:161.  https://doi.org/10.3389/fbioe.2015.00161 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miller BG, Raines RT (2004) Identifying latent enzyme activities: substrate ambiguity within modern bacterial sugar kinases. Biochemistry 43(21):6387–6392.  https://doi.org/10.1021/bi049424m CrossRefPubMedGoogle Scholar
  28. Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K (2003) Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol 69(7):3849–3857.  https://doi.org/10.1128/aem.69.7.3849-3857.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nishimasu H, Fushinobu S, Shoun H, Wakagi T (2007) Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Biol Chem 282(13):9923–9931.  https://doi.org/10.1074/jbc.M610678200 CrossRefPubMedGoogle Scholar
  30. Nocek B, Stein AJ, Jedrzejczak R, Cuff ME, Li H, Volkart L, Joachimiak A (2011) Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. J Mol Biol 406(2):325–342.  https://doi.org/10.1016/j.jmb.2010.12.021 CrossRefPubMedGoogle Scholar
  31. Plumbridge J (2001) DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Nucleic Acids Res 29(2):506–514.  https://doi.org/10.1093/nar/29.2.506 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 3(57):543–594Google Scholar
  33. Qian Z, Zhao J, Bai X, Tong W, Chen Z, Wei H, Wang Q, Liu S (2013) Thermal stability of glucokinases in Thermoanaerobacter tengcongensis. Biomed Res Int 2013:646539.  https://doi.org/10.1155/2013/646539 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ramos I, Guzman S, Escalante L, Imriskova I, Rodriguez-Sanoja R, Sanchez S, Langley E (2004) Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. Res Microbiol 155(4):267–274.  https://doi.org/10.1016/j.resmic.2004.01.004 CrossRefPubMedGoogle Scholar
  35. Rother C, Gutmann A, Gudiminchi R, Weber H, Lepak A, Nidetzky B (2017) Biochemical characterization and mechanistic analysis of the levoglucosan kinase from Lipomyces starkeyi. Chembiochem 19:596–603.  https://doi.org/10.1002/cbic.201700587 CrossRefGoogle Scholar
  36. Rudolph FB, Fromm HJ (1971) A study on the kinetics and mechanism of D-lyxose and D-xylose activation of the adenosine triphosphatase activity associated with yeast hexokinase. J Biol Chem 7(246):2104–2110Google Scholar
  37. Sánchez-Moreno I, Hélaine V, Poupard N, Charmantray F, Légeret B, Hecquet L, García-Junceda E, Wohlgemuth R, Guérard-Hélaine C, Lemaire M (2012) One-pot cascade reactions using fructose-6-phosphate aldolase: efficient synthesis of D-arabinose 5-phosphate, D-fructose 6-phosphate and analogues. Adv Synth Catal 354(9):1725–1730.  https://doi.org/10.1002/adsc.201200150 CrossRefGoogle Scholar
  38. Sato Y, Poy F, Jacobson GR, Kuramitsu HK (1989) Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J Bacteriol 1(171):263–271.  https://doi.org/10.1128/JB.171.1.263-271 CrossRefGoogle Scholar
  39. Sato Y, Yamamoto Y, Kizaki H, Kuramitsu HK (1993) Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans. J Gen Microbiol 139(5):921–927.  https://doi.org/10.1099/00221287-139-5-921 CrossRefPubMedGoogle Scholar
  40. Schorken U (1998) Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385(E 2):229–243CrossRefPubMedGoogle Scholar
  41. Scopes RK, Testolin V, Stoter A, Griffiths-Smith K, Algar EM (1985) Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis. Biochem J 228(3):627–634CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shaeri J, Wright I, Rathbone EB, Wohlgemuth R, Woodley JM (2008) Characterization of enzymatic D-xylulose 5-phosphate synthesis. Biotechnol Bioeng 101(4):761–767.  https://doi.org/10.1002/bit.21949 CrossRefPubMedGoogle Scholar
  43. Sizemore C, Buchner E, Rygus T, Witke C, Gotz F, Hillen W (1991) Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Mol Gen Genet 227(3):377–384.  https://doi.org/10.1007/BF00273926 CrossRefPubMedGoogle Scholar
  44. Solovjeva ON, Kochetov GA (2008) Enzymatic synthesis of d-xylulose 5-phosphate from hydroxypyruvate and d-glyceraldehyde-3-phosphate. J Mol Catal B Enzym 54(3–4):90–92.  https://doi.org/10.1016/j.molcatb.2007.12.016 CrossRefGoogle Scholar
  45. Sproul AA, Lambourne LT, Jean-Jacques DJ, Kornberg HL (2001) Genetic control of manno(fructo)kinase activity in Escherichia coli. PNAS 98(26):15257–15259.  https://doi.org/10.1073/pnas.211569798 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thompson J, Sackett DL, Donkersloot JA (1991) Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306. J Biol Chem 33(266):22626–22633Google Scholar
  47. Thompson J, Nguyen NY, Robrish SA (1992) Sucrose fermentation by Fusobacterium mortiferum ATCC 25557: transport, catabolism, and products. J Bacteriol 10(174):3227–3235CrossRefGoogle Scholar
  48. Titgemeyer F, Reizer J, Reizer A, Saier MH Jr (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140(Pt 9):2349–2354.  https://doi.org/10.1099/13500872-140-9-2349 CrossRefPubMedGoogle Scholar
  49. Uehara T, Park JT (2004) The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186(21):7273–7279.  https://doi.org/10.1128/JB.186.21.7273-7279.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vergne-Vaxelaire C, Bordier F, Fossey A, Besnard-Gonnet M, Debard A, Mariage A, Pellouin V, Perret A, Petit J-L, Stam M, Salanoubat M, Weissenbach J, De Berardinis V, Zaparucha A (2013) Nitrilase activity screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. Adv Synth Catal 355(9):1763–1779.  https://doi.org/10.1002/adsc.201201098 CrossRefGoogle Scholar
  51. Weisser P, Kramer R, Sprenger GA (1996) Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Appl Environ Microbiol 11(62):4155–4161Google Scholar
  52. Wohlgemuth R (2009) C2-Ketol elongation by transketolase-catalyzed asymmetric synthesis. J Mol Catal B Enzym 61(1–2):23–29.  https://doi.org/10.1016/j.molcatb.2009.04.001 CrossRefGoogle Scholar
  53. Wohlgemuth R, Liese A, Streit W (2017) Biocatalytic phosphorylations of metabolites: past, present, and future. Trends Biotechnol 35(5):452–465.  https://doi.org/10.1016/j.tibtech.2017.01.005 CrossRefPubMedGoogle Scholar
  54. Zebiri I, Balieu S, Guilleret A, Reynaud R, Haudrechy A (2011) The chemistry of l-Sorbose. Eur J Org Chem 2011(16):2905–2910.  https://doi.org/10.1002/ejoc.201001578 CrossRefGoogle Scholar
  55. Zembrzuski B, Chilco P, Liu XL, Liu J, Conway T, Scopes R (1992) Cloning, sequencing, and expression of the Zymomonas mobilis fructokinase gene and structural comparison of the enzyme with other hexose kinases. J Bacteriol 11(174):3455–3460CrossRefGoogle Scholar
  56. Zhao S, Kumar R, Sakai A, Vetting MW, Wood BM, Brown S, Bonanno JB, Hillerich BS, Seidel RD, Babbitt PC, Almo SC, Sweedler JV, Gerlt JA, Cronan JE, Jacobson MP (2013) Discovery of new enzymes and metabolic pathways using structure and genome context. Nature 502(7473):698–702.  https://doi.org/10.1038/nature12576 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carine Vergne-Vaxelaire
    • 1
  • Aline Mariage
    • 1
  • Jean-Louis Petit
    • 1
  • Aurélie Fossey-Jouenne
    • 1
  • Christine Guérard-Hélaine
    • 2
    • 3
  • Ekaterina Darii
    • 1
  • Adrien Debard
    • 1
  • Stessy Nepert
    • 1
  • Virginie Pellouin
    • 1
  • Marielle Lemaire
    • 2
    • 3
  • Anne Zaparucha
    • 1
  • Marcel Salanoubat
    • 1
  • Véronique de Berardinis
    • 1
    Email author return OK on get
  1. 1.Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayEvryFrance
  2. 2.Clermont Université, Université Blaise Pascal, ICCF, BP 10448Clermont-FerrandFrance
  3. 3.CNRS, UMR 6296, BP 8002663177AubièreFrance

Personalised recommendations