Skip to main content
Log in

Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cowpea N2 fixation and yield can be enhanced by selecting competitive and efficient indigenous rhizobia. Strains from contrasting agro-ecologies of Kilifi and Mbeere (Kenya) were screened. Two pot experiments were established consisting of 13 Bradyrhizobium strains; experiment 1 (11 Mbeere + CBA + BK1 from Burkina Faso), experiment 2 (12 Kilifi + CBA). Symbiotic effectiveness was assessed (shoot biomass, SPAD index and N uptake). Nodule occupancy of 13 simultaneously co-inoculated strains in each experiment was analyzed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) to assess competitiveness. Strains varied in effectiveness and competitiveness. The four most efficient strains were further evaluated in a field trial in Mbeere during the 2014 short rains. Strains from bacteroids of cowpea nodules from pot and field experiments were accurately identified as Bradyrhizobium by MALDI-TOF based on the SARAMIS™ database. In the field, abundant indigenous populations 7.10 × 103 rhizobia g−1 soil, outcompeted introduced strains. As revealed by MALDI-TOF, indigenous strains clustered into six distinct groups (I, II, III, IV, V and VI), group III were most abundant occupying 80% of nodules analyzed. MALDI-TOF was rapid, affordable and reliable to identify Bradyrhizobium strains directly from nodule suspensions in competition pot assays and in the field with abundant indigenous strains thus, its suitability for future competition assays. Evaluating strain competitiveness and then symbiotic efficacy is proposed in bioprospecting for potential cowpea inoculant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ampomah OY, Ofori-Ayeh E, Solheim B, Svenning MM (2008) Host range, symbiotic effectiveness and nodulation competitiveness of some indigenous cowpea bradyrhizobia isolates from the transitional savanna zone of Ghana. Afr J Biotechnol 7(8):988–996

    CAS  Google Scholar 

  • Asad S, Malik K, Hafeez F (1991) Competition between inoculated and indigenous Rhizobium/Bradyrhizobium spp. strains for nodulation of grain and fodder legumes in Pakistan. Biol Fertil Soils 12(2):107–111

    Article  Google Scholar 

  • Awonaike K, Kumarasinghe K, Danso S (1990) Nitrogen fixation and yield of cowpea (Vigna unguiculata) as influenced by cultivar and Bradyrhizobium strain. Field Crops Res 24(3–4):163–171

    Article  Google Scholar 

  • Batista L, Irisarri P, Rebuffo M, Jose Cuitino M, Sanjuan J, Monza J (2015) Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biol Fertil Soils 51(1):11–20. https://doi.org/10.1007/s00374-014-0946-3

    Article  Google Scholar 

  • Biswas S, Rolain J-M (2013) Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 92(1):14–24

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PJ (1992) Ecology of Bradyrhizobium and Rhizobium. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 293–348

    Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54(5):464–465

    Article  Google Scholar 

  • Bremner J (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55(1):11–33

    Article  CAS  Google Scholar 

  • Brockwell J (1963) Accuracy of a plant-infection technique for counting populations of Rhizobium trifolii. Appl Microbiol 11(5):377–383

    PubMed  PubMed Central  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1970) Plant nutrient solutions. In: Somasegaran P, Hoben H (eds) Handbook for rhizobia: methods in legume-Rhizobium technology. Niftal Project. University of Hawaii, Honolulu, pp 245–249

    Google Scholar 

  • Checcucci A, Azzarello E, Bazzicalupo M, Galardini M, Lagomarsino A, Mancuso S, Marti L, Marzano MC, Mocali S, Squartini A (2016) Mixed nodule infection in Sinorhizobium melilotiMedicago sativa symbiosis suggest the presence of cheating behavior. Front Plant Sci 7:835. https://doi.org/10.3389/fpls.2016.00835

    Article  PubMed  PubMed Central  Google Scholar 

  • da Costa EM, de Almeida Ribeiro PR, de Lima W, Farias TP, de Souza Moreira FM (2017) Lima bean nodulates efficiently with Bradyrhizobium strains isolated from diverse legume species. Symbiosis 73(2):125–133. https://doi.org/10.1007/s13199-017-0473-8

    Article  CAS  Google Scholar 

  • Danso SKA, Owiredu JD (1988) Competitiveness of introduced and indigenous cowpea Bradyrhizobium strains for nodule formation on cowpeas Vigna unguiculata (L.) walp in 3 soils. Soil Biol Biochem 20(3):305–310. https://doi.org/10.1016/0038-0717(88)90008-9

    Article  Google Scholar 

  • de Almeida Ribeiro PR, dos Santos JV, da Costa EM, Lebbe L, Assis ES, Louzada MO, Guimarães AA, Willems A, de Souza Moreira FM (2015) Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils. Agric Ecosyst Environ 212:85–93

    Article  Google Scholar 

  • de Freitas ADS, Fernandes Silva A, Valadares de Sá Barretto Sampaio E (2012) Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass Bioenergy 45:109–114. https://doi.org/10.1016/j.biombioe.2012.05.017

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36(8):1275–1288

    Article  CAS  Google Scholar 

  • Ehlers J, Hall A (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53(1):187–204

    Article  Google Scholar 

  • FAOSTATS (2014) PUblisher. http://www.fao.org/faostat/en/#data/QC Accessed 28 Feb 2017

  • Fening JO, Danso SKA (2002) Variation in symbiotic effectiveness of cowpea bradyrhizobia indigenous to Ghanaian soils. Appl Soil Ecol 21(1):23–29. https://doi.org/10.1016/s0929-1393(02)00042-2

    Article  Google Scholar 

  • Ferreira E, Marques J (1992) Selection of Portuguese Rhizobium leguminosarum bv. trifolii strains for production of legume inoculants. Plant Soil 147(1):151–158

    Article  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CAB International, Wallingford

    Book  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377

    Article  PubMed  Google Scholar 

  • Guimarães AA, Duque Jaramillo PM, Abrahao Nobrega RS, Florentino LA, Silva KB, de Souza Moreira FM (2012) Genetic and symbiotic diversity of ditrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78(18):6726–6733. https://doi.org/10.1128/aem.01303-12

    Article  Google Scholar 

  • Howieson J, Dilworth M (2016) Working with rhizobia. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Howieson J, Loi A, Carr S (1995) Biserrula pelecinus L.—a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res 46(5):997–1009

    Article  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RN, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86(4):927–939

    Article  Google Scholar 

  • Jaetzold R, Schimdt H (1983) Farm management handbook: natural and farm management information, vol II/B. Ministry of agriculture, Nairobi

    Google Scholar 

  • Jaetzold R, Schmidt H, Hornetz B, Shisanya C (2006) Ministry of agriculture farm management handbook of Kenya VOL. II-Part C Subpart C1. Ministry of agriculture, Nairobi

    Google Scholar 

  • Ji ZJ, Yan H, Cui QG, Wang ET, Chen WF, Chen WX (2017) Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Syst Appl Microbiol 40:114–119

    Article  PubMed  Google Scholar 

  • Karanja D, Githunguri C, M'Ragwa L, Mulwa D, Mwiti S (2006) Variety, characteristics and production guidelines of traditional food crops. KARI Katumani Res Centre 5:9–14

    Google Scholar 

  • Kimiti JM, Odee DW (2010) Integrated soil fertility management enhances population and effectiveness of indigenous cowpea rhizobia in semi-arid eastern Kenya. Appl Soil Ecol 45(3):304–309

    Article  Google Scholar 

  • Krasova-Wade T, Diouf O, Ndoye I, Sall CE, Braconnier S, Neyra M (2006) Water-condition effects on rhizobia competition for cowpea nodule occupancy. Afr J Biotechnol 5(16):1457–1463

    CAS  Google Scholar 

  • Langyintuo A, Lowenberg-DeBoer J, Faye M, Lambert D, Ibro G, Moussa B, Kergna A, Kushwaha S, Musa S, Ntoukam G (2003) Cowpea supply and demand in West and Central Africa. Field Crops Res 82(2):215–231

    Article  Google Scholar 

  • Law IJ, Botha WF, Majaule UC, Phalane FL (2007) Symbiotic and genomic diversity of ‘cowpea’ bradyrhizobia from soils in Botswana and South Africa. Biol Fertil Soils 43(6):653–663. https://doi.org/10.1007/s00374-006-0145-y

    Article  Google Scholar 

  • Martins L, Xavier G, Rangel F, Ribeiro J, Neves M, Morgado L, Rumjanek N (2003) Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yield in the semi-arid region of Brazil. Biol Fertil Soils 38(6):333–339

    Article  Google Scholar 

  • Mathu S, Herrmann L, Pypers P, Matiru V, Mwirichia R, Lesueur D (2012) Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. Walp.) and green gram (Vigna radiata L. Wilczek.) yields in Kenya. Soil Sci Plant Nutr 58(6):750–763. https://doi.org/10.1080/00380768.2012.741041

    Article  Google Scholar 

  • McInnes A, Haq K (2007) Contributions of rhizobia to soil nitrogen fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility—a key to sustainable land use in agriculture. Springer, Dordrecht, pp 99–128

    Google Scholar 

  • Mehlich A, Pinkerton A, Robertson W, Kempton R (1962) Mass analysis methods for soil fertility evaluation. Ministry of agriculture, Nairobi

    Google Scholar 

  • Mehta A, Silva LP (2015) MALDI-TOF MS profiling approach: how much can we get from it? Front Plant Sci 6(184). https://doi.org/10.3389/fpls.2015.00184

  • Müller P, Pflüger V, Wittwer M, Ziegler D, Chandre F, Simard F, Lengeler C (2013) Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS One 8(2):e57486. https://doi.org/10.1371/journal.pone.0057486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ndiso J, Chemining’wa G, Olubayo F, Saha H (2015) Participatory selection of cowpea varieties in Kilifi county of Kenya. IJPSS 4(2):1–10 IJPSS.21843

    Article  Google Scholar 

  • Ndungu SM, Messmer MM, Ziegler D, Gamper HA, Mészáros É, Thuita M, Vanlauwe B, Frossard E, Thonar C (2018) Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2017.12.014

  • Novák K (2011) Determination of symbiotic nodule occupancy in the model Vicia tetrasperma using a fluorescence scanner. Ann Bot 107(4):709–715

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Hara G (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Anim Prod Sci 41(3):417–433

    Article  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States department of agriculture, Washington

    Google Scholar 

  • Pérez-Giménez J, Quelas JI, Lodeiro AR (2011) Competition for nodulation. In: El-Shemy HA (ed) Soybean physiology and biochemistry. InTech, Rijeka, pp 139–166

    Google Scholar 

  • Pistorio M, Balagué L, Del Papa M, Pich-Otero A, Lodeiro A, Hozbor D, Lagares A (2002) Construction of a Sinorhizobium meliloti strain carrying a stable and non-transmissible chromosomal single copy of the green fluorescent protein GFP-P64L/S65T. FEMS Microbiol Lett 214(2):165–170

    Article  PubMed  CAS  Google Scholar 

  • Pule-Meulenberg F, Belane AK, Krasova-Wade T, Dakora FD (2010) Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol 10:89. https://doi.org/10.1186/1471-2180-10-89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245(1):147–162

    Article  CAS  Google Scholar 

  • Rufini M, Da Silva MAP, Ferreira PAA, de Souza Cassetari A, Soares BL, De Andrade MJB, de Souza Moreira FM (2014) Symbiotic efficiency and identification of rhizobia that nodulate cowpea in a Rhodic Eutrudox. Biol Fertil Soils 50(1):115–122

    Article  Google Scholar 

  • Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987) Genetic diversity in Bradyrhizobium japonicum serogroup-123 and its relation to genotype-specific nodulation of soybean. Appl Environ Microbiol 53(11):2624–2630

    PubMed  PubMed Central  CAS  Google Scholar 

  • Singh B, Ajeigbe H, Tarawali SA, Fernandez-Rivera S, Abubakar M (2003) Improving the production and utilization of cowpea as food and fodder. Field Crops Res 84(1):169–177

    Article  Google Scholar 

  • Slattery J, Coventry D, Slattery W (2001) Rhizobial ecology as affected by the soil environment. Anim Prod Sci 41(3):289–298

    Article  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer-Verlag, NewYork

    Book  Google Scholar 

  • Spriggs AC, Dakora FD (2009) Assessing the suitability of antibiotic resistance markers and the indirect ELISA technique for studying the competitive ability of selected Cyclopia Vent. rhizobia under glasshouse and field conditions in South Africa. BMC Microbiol 9:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57(1):19–28

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thrall PH, Laine A-L, Broadhurst LM, Bagnall DJ, Brockwell J (2011) Symbiotic effectiveness of rhizobial mutualists varies in interactions with native Australian legume genera. PLoS One 6(8):e23545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uhlik O, Strejcek M, Junkova P, Sanda M, Hroudova M, Vlcek C, Mackova M, Macek T (2011) Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry-and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol 77(19):6858–6866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulzen J, Abaidoo RC, Mensah NE, Masso C, AbdelGadir AH (2016) Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in northern Ghana. Front Plant Sci 7:1770

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Berkum P (1990) Evidence for a third uptake hydrogenase phenotype among the soybean bradyrhizobia. Appl Environ Microbiol 56(12):3835–3841

    PubMed  PubMed Central  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wade TK, Le Quere A, Laguerre G, N'Zoue A, Ndione J-A, dorego F, Sadio O, Ndoye I, Neyra M (2014) Eco-geographical diversity of cowpea bradyrhizobia in Senegal is marked by dominance of two genetic types. Syst Appl Microbiol 37(2):129–139. https://doi.org/10.1016/j.syapm.2013.10.002

    Article  PubMed  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Wittwer M, Heim J, Schar M, Dewarrat G, Schurch N (2011) Tapping the potential of intact cell mass spectrometry with a combined data analytical approach applied to Yersinia spp.: detection, differentiation and identification of Y. pestis. Syst Appl Microbiol 34(1):12–19. https://doi.org/10.1016/j.syapm.2010.11.006

    Article  PubMed  CAS  Google Scholar 

  • Wongphatcharachai M, Wang P, Staley C, Chun CL, Ferguson JA, Moncada KM, Sheaffer CC, Sadowsky MJ (2015) Site-specific distribution and competitive ability of indigenous bean-nodulating rhizobia isolated from organic fields in Minnesota. J Biotechnol 214:158–168

    Article  PubMed  CAS  Google Scholar 

  • Xu KW, Penttinen P, Chen YX, Chen Q, Zhang X (2013) Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid–hot river valley area in Panxi, Sichuan, China. Appl Microbiol Biotechnol 97(2):783–793

    Article  PubMed  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JJ, Yu T, Lou K, Mao PH, Wang ET, Chen WF, Chen WX (2014) Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol 37(7):520–524

    Article  PubMed  Google Scholar 

  • Ziegler D, Mariotti A, Pflueger V, Saad M, Vogel G, Tonolla M, Perret X (2012) In Situ identification of plant-invasive bacteria with MALDI-TOF mass spectrometry. PLoS One 7(5):e31789. https://doi.org/10.1371/journal.pone.0037189

    Article  CAS  Google Scholar 

  • Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V, De Meyer S, Vogel G, Tonolla M, Howieson J, Reeve W, Perret X (2015) Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 99(13):5547–5562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Laurie Paule Schönholzer, Dr. Seher Bahar Aciksöz Özden, Monika Macsai, Carla Mosimann, Silvana Niedermann and Sämi Bickel for the technical support during experiments and Dr. Federica Tamburini for N analysis. Winnie Kimutai and Silas Kiragu are acknowledged for their support during field trials. Thanks to Dr. Abidine Traore for the cowpea nodules from which strain BK1 was isolated, and MEA for facilitating Biofix inoculant from which CBA (CB 1015) strain was isolated. Valuable input by the anonymous reviewers and the editor for improving this manuscript is also acknowledged.

Funding

This research was supported by funding from ETH Zurich Engineering for Development (E4D) scholarship through the Sawiris Foundation for Social development (Grant number 2-71060-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Mathu Ndungu or Cécile Thonar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndungu, S.M., Messmer, M.M., Ziegler, D. et al. Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya. Appl Microbiol Biotechnol 102, 5265–5278 (2018). https://doi.org/10.1007/s00253-018-9005-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9005-6

Keywords

Navigation