Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5197–5208 | Cite as

A novel antifungal property for the Bacillus licheniformis ComX pheromone and its possible role in inter-kingdom cross-talk

  • Elham Esmaeilishirazifard
  • Aliakbar Dariush
  • Sterghios A. Moschos
  • Tajalli Keshavarz
Applied genetics and molecular biotechnology

Abstract

Quorum sensing molecules (QSMs) regulate, through a chemical communication process, multiple complex systems in bacterial and some fungal populations on the basis of cell density. The bacterial QSMs involved in inter-kingdom cross-talk may exhibit antagonistic activity against fungi. This provides an important opportunity for biocontrol of fungal invasion in plants. It has been shown that cultures of Bacillus spp. inhibit fungal growth. Here, we explore the inhibitory potential of the industrial workhorse Bacillus licheniformis NCIMB-8874 and its QSM (ComX pheromone) on the growth of Aspergillus flavus, a cereal, legume, and nut crop pathogen. Our studies show that ComX filtered extracts from cultures of B. licheniformis can cause a significant reduction in the growth of A. flavus NRRL 3357 and ESP 15 at a concentration as low as 13 μg ml−1. This work evidences, for the first time, the inter-kingdom utility of the bacterial quorum sensing ComX pheromone indicating potential antifungal food security against A. flavus.

Keywords

Quorum sensing molecule Bacillus Aspergillus Natural antifungal Fungal colony area Inter-kingdom communication 

Notes

Acknowledgements

We thank the laboratory staff member of the Faculty of Science and Technology, University of Westminster, for all the supports. We also thank Dr. Pamela Greenwell for valuable discussions.

Funding

This work was part of a PhD project and supported by University of Westminster and the expenses were covered by the department of life sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9004_MOESM1_ESM.pdf (475 kb)
ESM 1 (PDF 474 kb)

References

  1. Abdel-Hadi A, Schmidt-Heydt M, Parra R, Geisen R, Magan N (2011) A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. J R Soc Interface 9:757–767CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133CrossRefPubMedGoogle Scholar
  3. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433CrossRefPubMedGoogle Scholar
  5. Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson RK, Keller NP (2009) Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact 22:882–894CrossRefPubMedGoogle Scholar
  6. Brown SH, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685CrossRefGoogle Scholar
  7. Campbell KW, White DG (1995) Evaluation of corn genotypes for resistance to Aspergillus ear rot, kernel infection, and aflatoxin production. Plant Dis 79:1039–1045CrossRefGoogle Scholar
  8. Chen ZY, Brown RL, Damann KE, Cleveland TE (2010) PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 11:69–81CrossRefPubMedGoogle Scholar
  9. CLSI (2008) Reference method for broth dilution antifungal susceptibility testing for filamentous fungi; approved standard-second edition. CLSI document M38-A2. The Clinical and Laboratory Standard Institute, Wayne, PennsylvaniaGoogle Scholar
  10. Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906CrossRefPubMedGoogle Scholar
  11. du Toit EA, Rautenbach M (2000) A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. J Microbiol Methods 42:159–165CrossRefPubMedGoogle Scholar
  12. Dudler R, Eberl L (2006) Interactions between bacteria and eukaryotes via small molecules. Curr Opin Biotechnol 17:268–273CrossRefPubMedGoogle Scholar
  13. Dufresne PJ, Moonjely SS, Ozaki K, Tremblay C, Laverdière M, Dufresne SF (2017) High frequency of pathogenic Aspergillus species among nonsporulating moulds from respiratory tract samples. Med Mycol 55:233–236CrossRefPubMedGoogle Scholar
  14. Esmaeilishirazifard E (2016) Investigation of a quorum sensing peptide in Bacillus licheniformis and its novel antifungal property. Dissertation, University of Westminster, London, UKGoogle Scholar
  15. Esmaeilishirazifard E, De Vizio D, Moschos SA, Keshavarz T (2017) Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. Appl Microbiol Biot Expr 7:78Google Scholar
  16. Evans KA, Chai D, Graybill TL, Burton G, Sarisky RT, Lin-Goerke J, Johnston VK, Rivero RA (2006) An efficient, asymmetric solid-phase synthesis of benzothiadiazine-substituted tetramic acids: potent inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. Bioorg Med Chem Lett 16:2205–2208CrossRefPubMedGoogle Scholar
  17. Fox JE (2004) Chemical communication threatened by endocrine- disrupting chemicals. Environ Health Perspect 112:648–653CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gabrielli E, Fothergill AW, Brescini L, Sutton DA, Marchionni E, Orsetti E, Staffolani S, Castelli P, Gesuita R, Barchiesi F (2014) Osteomyelitis caused by Aspergillus species: a review of 310 reported cases. Clin Microbiol and Infec 20:559–565CrossRefGoogle Scholar
  20. Gnonlonfin GJB, Hell K, Adjovi Y, Fandohan P, Koudande DO, Mensah GA, Sanni A, Brimer L (2013) A review on aflatoxin contamination and its implications in the developing world: a Sub-Saharan African perspective. Crit Rev Food Sci 53:349–365CrossRefGoogle Scholar
  21. Gokmen V, Acar J, Sarioðlu K (2005) Liquid chromatographic method for the determination of patulin in apple juice using solid-phase extraction. Anal Chim Acta 543:64–69CrossRefGoogle Scholar
  22. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619CrossRefPubMedPubMedCentralGoogle Scholar
  23. Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207CrossRefPubMedGoogle Scholar
  24. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-Nacylhomoserine lactones. P Natl Acad Sci USA 102:309–314CrossRefGoogle Scholar
  25. Lee JH, Kim C, Kim SH, Sethi G, Ahn KS (2015) Farnesol inhibits tumour growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signalling pathway. Cancer Lett 360:280–293CrossRefPubMedGoogle Scholar
  26. Lee RJ, Workman AD, Carey RM, Chen B, Rosen PL, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA (2016) Fungal aflatoxins reduce respiratory mucosal ciliary function. Sci Rep-uk 6:33221CrossRefGoogle Scholar
  27. Leema G, Chou DS, Jesudasan CAN, Geraldine P, Thomas PA (2011) Expression of genes of the aflatoxin biosynthetic pathway in Aspergillus flavus isolates from keratitis. Mol Vis 17:2889–2897PubMedPubMedCentralGoogle Scholar
  28. Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86:805–817CrossRefPubMedPubMedCentralGoogle Scholar
  29. Llanos A, François JM, Parrou JL (2015) Tracking the best reference genes for RT-qPCR data normalisation in filamentous fungi. BMC Genomics 16:71CrossRefPubMedPubMedCentralGoogle Scholar
  30. Losada L, Ajayi O, Frisvad JC, Yu J, Nierman WC (2009) Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med Mycol 47:S88–S96CrossRefPubMedGoogle Scholar
  31. Lu Y, Su C, Unoje O, Liu H (2014) Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. P Natl Acad Sci 111:1975–1980CrossRefGoogle Scholar
  32. Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449CrossRefPubMedPubMedCentralGoogle Scholar
  33. Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE (2016) Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc B 371:20150460CrossRefGoogle Scholar
  34. Miller JD (1995) Fungi and mycotoxins in grain: implications for stored product research. J Stored Prod Res 31:1–16CrossRefGoogle Scholar
  35. Miller MB, Bassler BL (2001) Quorum sensing in Bacteria. Annu Rev Microbiol 55:165–199CrossRefPubMedGoogle Scholar
  36. Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G (2008) Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother 62:1281–1284CrossRefPubMedGoogle Scholar
  37. Mullard A (2009) Microbiology: tinker, bacteria, eukaryote, spy. Nature 459:159–161CrossRefPubMedGoogle Scholar
  38. Nealson KH, Platt T, Hastings W (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedPubMedCentralGoogle Scholar
  39. Nesci AV, Bluma RV, Etcheverry MG (2005) In vitro selection of maizerhizobacteria to study potential biological control of Aspergillus section Flavi and aflatoxin production. Eur J Plant Pathol 113:159–171CrossRefGoogle Scholar
  40. Palumbo JD, Baker JL, Mahoney NE (2006) Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol 52:45–52CrossRefPubMedGoogle Scholar
  41. Park SY, Yoon JA, Kim SH (2017) Voriconazole-refractory invasive aspergillosis. Korean J Intern Med 32:805–812CrossRefPubMedPubMedCentralGoogle Scholar
  42. Payne GA (1998) Process of contamination by aflatoxin producing fungi and their impacts on crops. In: Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety. Marcel Dekker Inc, New York, pp 279–306Google Scholar
  43. Porpon R, Chen YC, Chakrabarti A, Li RY, Shivaprakash RM, Yu J, Kung HC, Watcharananan S, Tan A.L., Saffari SE and Tan BH (2017) Epidemiology and clinical characteristics of invasive mould infections: a multicenter, retrospective analysis in five Asian countries. Med MycolGoogle Scholar
  44. Rahimi S, Sohrabi N, Ebrahimi MA, Tebyanian M, Zadeh MT, Rahimi S (2016) Studying the effect of aflatoxin genes Aflp and Aflq on Aspergillus flavus and Aspergillus parasiticus in the cattle feed used in industrial animal husbandries. Acta Med Austriaca 32:2091Google Scholar
  45. Raiesi O, Siavash M, Mohammadi F, Chabavizadeh J, Mahaki B. Maherolnaghsh M and Dehghan P (2017) Frequency of cutaneous fungal infections and azole resistance of the isolates in patients with diabetes mellitus. Adv Biomed Res 6Google Scholar
  46. Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C (2011) Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol Lett 324:89–97CrossRefPubMedGoogle Scholar
  47. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340CrossRefPubMedGoogle Scholar
  48. Reddy KRN, Raghavender CR, Reddy BN, Salleh B (2010) Biological control of Aspergillus flavus growth and subsequent aflatoxin B1 production in sorghum grains. Afr J Biotechnol 9:4247–4250Google Scholar
  49. Rumbaugh KP (2007) Convergence of hormones and autoinducers at the host/pathogen interface. Annu Bioanal Chem 387:425–435CrossRefGoogle Scholar
  50. Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Factories 10(1):74CrossRefGoogle Scholar
  51. Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol 64:3707–3712PubMedPubMedCentralGoogle Scholar
  52. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl LEO, Hartmann A (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918CrossRefPubMedGoogle Scholar
  53. Seidler MJ, Salvenmoser S, Muller FM (2008) Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52:4130–4136CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shiner EK, Rumbaugh KP, Williams SC (2005) Inter-kingdom signalling deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29:935–947CrossRefPubMedGoogle Scholar
  55. Sorrentino F, Roy I, Keshavarz T (2010) Impact of linoleic acid supplementation on lovastatin production in Aspergillus terreus cultures. Appl Microbiol Biotechnol 88:65–73CrossRefPubMedGoogle Scholar
  56. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. P Natl Acad Sci USA 100:8951–8956CrossRefGoogle Scholar
  57. Troskie AM, Vlok NM, Rautenbach M (2012) A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi. J Microbiol Methods 91:551–558CrossRefPubMedGoogle Scholar
  58. Yu J, Whitelaw CA, Nierman WC, Bhatnagar D, Cleveland TE (2004) Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiol Lett 237:333–340PubMedGoogle Scholar
  59. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72CrossRefPubMedGoogle Scholar
  60. Viegas C, Faria T, Carolino E, Sabino R, Gomes A, Viegas S (2016) Occupational exposure to fungi and particles in animal feed industry. Med Pr 67:143–154CrossRefPubMedGoogle Scholar
  61. Wang CY, Wang B, Wiryowidagdo S, Wray V, van Soest R, Steube K, Guan H, Proksch P, Ebel R (2003) Melophlins C-O, thirteen novel tetramic acids from themarine sponge Melophlus sarassinorum. J Nat Prod 66:51–56CrossRefPubMedGoogle Scholar
  62. Wiesmüller GA, Heinzow B, Aurbach U, Bergmann KC, Bufe A, Buzina W, Cornely OA, Engelhart S, Fischer G, Gabrio T and Heinz W (2017) Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure. Allergo J Int 1–26Google Scholar
  63. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938CrossRefPubMedGoogle Scholar
  64. Williams HE, Steele JCP, Clements MO, Keshavarz T (2012) γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans. Appl Microbiol Biotechnol 96:773–781CrossRefPubMedGoogle Scholar
  65. Zhao G, Zaidi TS, Bozkurt-Guzel C, Zaidi TH, Lederer JA, Priebe GP, Pier GB (2016) Efficacy of antibody to PNAG against keratitis caused by fungal pathogens Antibody to PNAG Protects Against Fungal Keratitis. Invest Ophth Vis Sci 57:6797–6804CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elham Esmaeilishirazifard
    • 1
  • Aliakbar Dariush
    • 2
    • 3
  • Sterghios A. Moschos
    • 4
    • 5
  • Tajalli Keshavarz
    • 1
  1. 1.Department of Life Sciences, Faculty of Science and TechnologyUniversity of WestminsterLondonUK
  2. 2.Institute of AstronomyUniversity of CambridgeCambridgeUK
  3. 3.Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
  4. 4.Department of Biomedical Sciences, Faculty of Science and TechnologyUniversity of WestminsterLondonUK
  5. 5.Department of Applied Sciences, Faculty of Health and Life SciencesNorthumbria UniversityNewcastleUK

Personalised recommendations