Skip to main content

Advertisement

Log in

Immunogenomic screening approach to identify new antigens for the serological diagnosis of chronic Chagas’ disease

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Serological tests are preferentially used for the diagnosis of Chagas’ disease (CD) during the chronic phase because of the low parasitemia and high anti-Trypanosoma cruzi antibody titers. However, the current methods showed several disadvantages, as contradictory or inconclusive results, mainly related to the characteristics of the antigens used, in general, crude or whole parasites, but also due to antigen production protocol and the experimental conditions used in serological tests. Thus, better-quality serological assays are urgently needed. Here, we performed a wide immunogenomic screen strategy to identify conserved linear B-cell epitopes in the predicted proteome based on genome sequence from T. cruzi strains to will be applied as synthetic peptides in the serodiagnosis of the chronic CD. Three B-cell epitopes derived from mucin-associated surface protein (MASP) family, expressed in both infective parasite stages, trypomastigote and amastigotes, conserved in T. cruzi strains, and highly divergent as compared with Leishmania spp. proteome, were selected for this study. The results demonstrated that synthetic peptide 2 and a mixture of peptides (Mix II: peptides 2 and 3) were able to identify all chronic CD cases, indeterminate or Chagas cardiomyopathy clinical presentation, and simultaneously able to discriminate infections caused by Leishmania parasites, with high accuracy (98.37 and 100.00%, respectively) and agreement (kappa index = 0.967 and 1.000, respectively) with direct methods as compared to current diagnostic pipeline performed by reference laboratories in Brazil. This study represents an interesting strategy for the discovery of new antigens applied to serologic diagnosis of infectious diseases and for the technological development of platforms for large-scale production of diagnostic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Author 2008 International meeting: new diagnostic tests are urgently needed to treat patients with Chagas disease. Rev Soc Bras Med Trop 41(3):315–9

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  • Andrade ZA (1999) Immunopathology of Chagas disease. Mem Inst Oswaldo Cruz 94(Suppl 1):71–80

    Article  PubMed  Google Scholar 

  • Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38(Database issue):D457–D462. https://doi.org/10.1093/nar/gkp851

    Article  PubMed  CAS  Google Scholar 

  • Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309(5733):473–476. https://doi.org/10.1126/science.1110289

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-De-Deus R, Dos Mares-Guia ML, Nunes AZ, Costa KM, Junqueira RG, Mayrink W, Genaro O, Tavares CA (2002) Leishmania major-like antigen for specific and sensitive serodiagnosis of human and canine visceral leishmaniasis. Clin Diagn Lab Immunol 9(6):1361–1366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharyya T, Brooks J, Yeo M, Carrasco HJ, Lewis MD, Llewellyn MS, Miles MA (2010) Analysis of molecular diversity of the Trypanosoma cruzi trypomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology. Int J Parasitol 40(8):921–928. https://doi.org/10.1016/j.ijpara.2010.01.002

    Article  PubMed  CAS  Google Scholar 

  • Caballero ZC, Sousa OE, Marques WP, Saez-Alquezar A, Umezawa ES (2007) Evaluation of serological tests to identify Trypanosoma cruzi infection in humans and determine cross-reactivity with Trypanosoma rangeli and Leishmania spp. Clin Vaccine Immunol : CVI 14(8):1045–1049. https://doi.org/10.1128/CVI.00127-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardoso MS, Reis-Cunha JL, Bartholomeu DC (2015) Evasion of the immune response by Trypanosoma cruzi during acute infection. Front Immunol 6:659. https://doi.org/10.3389/fimmu.2015.00659

    Article  PubMed  CAS  Google Scholar 

  • Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfologia e ciclo evolutivo do Schizotrypanum cruzi n.gen., n. sp., agente etiolojico de nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1:59–218

    Article  Google Scholar 

  • Cordero EM, Nakayasu ES, Gentil LG, Yoshida N, Almeida IC, da Silveira JF (2009) Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 8(7):3642–3652. https://doi.org/10.1021/pr800887u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coura JR (2007) Chagas disease: what is known and what is needed—a background article. Mem Inst Oswaldo Cruz 102(Suppl 1):113–122

    Article  PubMed  Google Scholar 

  • de Godoy LM, Marchini FK, Pavoni DP, Rampazzo Rde C, Probst CM, Goldenberg S, Krieger MA (2012) Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics 12(17):2694–2703. https://doi.org/10.1002/pmic.201200078

    Article  PubMed  CAS  Google Scholar 

  • De Marchi CR, Di Noia JM, Frasch AC, Amato Neto V, Almeida IC, Buscaglia CA (2011) Evaluation of a recombinant Trypanosoma cruzi mucin-like antigen for serodiagnosis of Chagas’ disease. Clin Vaccine Immunol : CVI 18(11):1850–1855. https://doi.org/10.1128/CVI.05289-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dias J, Schofield C (1999) The evolution of Chagas disease (American trypanosomiasis) control after 90 years since Carlos Chagas discovery. Mem Inst Oswaldo Cruz 94(Suppl 1):103–121

    Article  PubMed  Google Scholar 

  • Dias JCP (2016) I Consenso Brasileiro em Doença de Chagas, 2015. Epidemiol Serv Saúde 25:7–86

    PubMed  Google Scholar 

  • dos Santos SL, Freitas LM, Lobo FP, Rodrigues-Luiz GF, Mendes TA, Oliveira AC, Andrade LO, Chiari E, Gazzinelli RT, Teixeira SM, Fujiwara RT, Bartholomeu DC (2012) The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Negl Trop Dis 6(8):e1779. https://doi.org/10.1371/journal.pntd.0001779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. https://doi.org/10.1093/bioinformatics/bti541

    Article  PubMed  CAS  Google Scholar 

  • Duarte MC, Pimenta DC, Menezes-Souza D, Magalhaes RD, Diniz JL, Costa LE, Chavez-Fumagalli MA, Lage PS, Bartholomeu DC, Alves MJ, Fernandes AP, Soto M, Tavares CA, Goncalves DU, Rocha MO, Coelho EA (2015) Proteins selected in Leishmania (Viannia) braziliensis by an immunoproteomic approach with potential serodiagnosis applications for tegumentary leishmaniasis. Clin Vaccine Immunol : CVI 22(11):1187–1196. https://doi.org/10.1128/CVI.00465-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309(5733):409–415. https://doi.org/10.1126/science.1112631

    Article  PubMed  CAS  Google Scholar 

  • Epidemiológica. MdSBSdVeSDdV (2009) Guia de vigilância epidemiológica. 7. ed. Brasília

  • Franzen O, Ochaya S, Sherwood E, Lewis MD, Llewellyn MS, Miles MA, Andersson B (2011) Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl Trop Dis 5(3):e984. https://doi.org/10.1371/journal.pntd.0000984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes YM, Lorena VM, Luquetti AO (2009) Diagnosis of Chagas disease: what has been achieved? What remains to be done with regard to diagnosis and follow up studies? Mem Inst Oswaldo Cruz 104(Suppl 1):115–121

    Article  PubMed  Google Scholar 

  • Grisard EC, Teixeira SM, de Almeida LG, Stoco PH, Gerber AL, Talavera-Lopez C, Lima OC, Andersson B, de Vasconcelos AT (2014) Trypanosoma cruzi clone Dm28c draft genome sequence. Genome Announc 2(1):e01114–e01113. https://doi.org/10.1128/genomeA.01114-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Junqueira C, Caetano B, Bartholomeu DC, Melo MB, Ropert C, Rodrigues MM, Gazzinelli RT (2010) The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med 12:e29. https://doi.org/10.1017/S1462399410001560

    Article  PubMed  CAS  Google Scholar 

  • Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. https://doi.org/10.1186/1745-7580-2-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewinsohn R (1981) Carlos Chagas and the discovery of Chagas’ disease (American trypanosomiasis). J R Soc Med 74(6):451–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, Padmanabhan P, Ndegwa DM, Temanni MR, Corrada Bravo H, El-Sayed NM, Burleigh BA (2016) Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. PLoS Pathog 12(4):e1005511. https://doi.org/10.1371/journal.ppat.1005511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mady C, Cardoso RH, Barretto AC, da Luz PL, Bellotti G, Pileggi F (1994) Survival and predictors of survival in patients with congestive heart failure due to Chagas’ cardiomyopathy. Circulation 90(6):3098–3102

    Article  PubMed  CAS  Google Scholar 

  • Marchini FK, de Godoy LM, Rampazzo RC, Pavoni DP, Probst CM, Gnad F, Mann M, Krieger MA (2011) Profiling the Trypanosoma cruzi phosphoproteome. PLoS One 6(9):e25381. https://doi.org/10.1371/journal.pone.0025381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(Web Server):W20–W25. https://doi.org/10.1093/nar/gkh435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medecins Sans Frontieres. Campaign for Access to Essential M (2008) International meeting: new diagnostic tests are urgently needed to treat patients with Chagas disease. Rev Soc Bras Med Trop 41(3):315–319

    Article  Google Scholar 

  • Mendes TA, Reis Cunha JL, de Almeida Lourdes R, Rodrigues Luiz GF, Lemos LD, dos Santos AR, da Camara AC, Galvao LM, Bern C, Gilman RH, Fujiwara RT, Gazzinelli RT, Bartholomeu DC (2013) Identification of strain-specific B-cell epitopes in Trypanosoma cruzi using genome-scale epitope prediction and high-throughput immunoscreening with peptide arrays. PLoS Negl Trop Dis 7(10):e2524. https://doi.org/10.1371/journal.pntd.0002524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menezes-Souza D, de Oliveira Mendes TA, de Araujo Leao AC, de Souza Gomes M, Fujiwara RT, Bartholomeu DC (2015a) Linear B-cell epitope mapping of MAPK3 and MAPK4 from Leishmania braziliensis: implications for the serodiagnosis of human and canine leishmaniasis. Appl Microbiol Biotechnol 99(3):1323–1336. https://doi.org/10.1007/s00253-014-6168-7

    Article  PubMed  CAS  Google Scholar 

  • Menezes-Souza D, Mendes TA, Gomes Mde S, Bartholomeu DC, Fujiwara RT (2015b) Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope. PLoS Negl Trop Dis 9(1):e3426. https://doi.org/10.1371/journal.pntd.0003426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menezes-Souza D, Mendes TA, Gomes Mde S, Reis-Cunha JL, Nagem RA, Carneiro CM, Coelho EA, Galvao LM, Fujiwara RT, Bartholomeu DC (2014) Epitope mapping of the HSP83.1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. Clin Vaccine Immunol : CVI 21(7):949–959. https://doi.org/10.1128/CVI.00151-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mucci J, Carmona SJ, Volcovich R, Altcheh J, Bracamonte E, Marco JD, Nielsen M, Buscaglia CA, Aguero F (2017) Next-generation ELISA diagnostic assay for Chagas disease based on the combination of short peptidic epitopes. PLoS Negl Trop Dis 11(10):e0005972. https://doi.org/10.1371/journal.pntd.0005972

    Article  PubMed  PubMed Central  Google Scholar 

  • Organization WH (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90(6):33–44

    Google Scholar 

  • Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39(7):839–847. https://doi.org/10.1038/ng2053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. https://doi.org/10.1038/nmeth.1701

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42(Database issue):D756–D763. https://doi.org/10.1093/nar/gkt1114

    Article  PubMed  CAS  Google Scholar 

  • Queiroz RM, Charneau S, Motta FN, Santana JM, Roepstorff P, Ricart CA (2013) Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods. J Proteome Res 12(7):3255–3263. https://doi.org/10.1021/pr400110h

    Article  PubMed  CAS  Google Scholar 

  • Reis-Cunha JL, Mendes TA, de Almeida Lourdes R, Ribeiro DR, Machado-de-Avila RA, de Oliveira Tavares M, Lemos DS, Camara AC, Olortegui CC, de Lana M, da Cunha Galvao LM, Fujiwara RT, Bartholomeu DC (2014) Genome-wide screening and identification of new Trypanosoma cruzi antigens with potential application for chronic Chagas disease diagnosis. PLoS One 9(9):e106304. https://doi.org/10.1371/journal.pone.0106304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salles BC, Costa LE, Alves PT, Dias AC, Vaz ER, Menezes-Souza D, Ramos FF, Duarte MC, Roatt BM, Chavez-Fumagalli MA, Tavares CA, Goncalves DU, Rocha RL, Goulart LR, Coelho EA (2017) Leishmania infantum mimotopes and a phage-ELISA assay as tools for a sensitive and specific serodiagnosis of human visceral leishmaniasis. Diagn Microbiol Infect Dis 87(3):219–225. https://doi.org/10.1016/j.diagmicrobio.2016.11.012

    Article  PubMed  CAS  Google Scholar 

  • Saúde Md (2014) Guia de Vigilância em Saúde. Ministério da Saúde

  • Teixeira AR, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA (2006) Chagas disease. Postgrad Med J 82(974):788–798. https://doi.org/10.1136/pgmj.2006.047357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J 3rd, Moles K, Collins D, Rohloff P, Tarleton R, Moreno SN, Orlando R, Docampo R (2011) Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6(3):e18013. https://doi.org/10.1371/journal.pone.0018013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG, Second Satellite M (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104(7):1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol : J Mol Epidemiol Evol Genet Infect Dis 12(2):240–253. https://doi.org/10.1016/j.meegid.2011.12.009

    Article  Google Scholar 

Download references

Acknowledgments

EAFC, MORS, and DM-S thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for fellowships.

Funding

This work was supported by grants from PRPq/UFMG (87-05/2016) and CAPES (23038.004862/2015-74).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Menezes-Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The use of human samples was approved (protocol CAAE–66026117.3.0000.5149) by the Ethics Committee of the Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil. All patients received an individual copy of the study policy, which was reviewed by an independent person, and all participants gave their consent form in Portuguese, before blood collection. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elisei, R.M.T., Matos, C.S., Carvalho, A.M.R.S. et al. Immunogenomic screening approach to identify new antigens for the serological diagnosis of chronic Chagas’ disease. Appl Microbiol Biotechnol 102, 6069–6080 (2018). https://doi.org/10.1007/s00253-018-8992-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8992-7

Keywords

Navigation