Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 4987–4994 | Cite as

Medicinal components in Termitomyces mushrooms

  • Huei-Mei Hsieh
  • Yu-Ming Ju
Mini-Review

Abstract

Termitomyces is a genus of edible mushrooms commonly consumed in Africa and Asia among the mushrooms collected from the wild. Termitomyces mushrooms grow as symbionts in the termite nests, where they produce various enzymes to help termites digest lignocellulosic substrates. Many species of Termitomyces are used by different ethnic groups with ethnomedicinal knowledge. Bioactive components that Termitomyces mushrooms contain have potential uses as antioxidants, immunomodulators, antitumors, and antimicrobials. Termitomyces also has a potential for treating neurodegenerative disorders. Here, we review the bioactive compounds from Termitomyces species that have been isolated and assayed in vitro and/or in vivo for their medicinal properties.

Keywords

Ethnomedicine Phenolic compound Polysaccharide Cerebroside Serine protease Ergostane Saponins Fatty acid amide 

Notes

Acknowledgements

The authors thank the Ministry of Science and Technology of Taiwan for the Grant MOST 105-2621-B-001-006-MY2.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Human and animal studies

This article does not contain any studies with human participants or animals performed by the authors.

References

  1. Aanen DK, de Fine Licht HH, Debets AJ, Kerstes NA, Hoekstra RF, Boomsma JJ (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science (Wash D C) 326:1103–1106.  https://doi.org/10.1126/science.1173462 CrossRefGoogle Scholar
  2. Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF (2012) Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid Based Complement Alternat Med 2012(464238):1–12.  https://doi.org/10.1155/2012/464238 CrossRefGoogle Scholar
  3. Abidin MH, Abdullah N, Abidin NZ (2016) Protective effect of antioxidant extracts from grey oyster mushroom, Pleurotus pulmonarius (Agaricomycetes), against human low-density lipoprotein oxidation and aortic endothelial cell damage. Int J Med Mushrooms 18:109–121.  https://doi.org/10.1615/IntJMedMushrooms.v18.i2.20 CrossRefPubMedGoogle Scholar
  4. Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 9(163):1–27.  https://doi.org/10.3390/nu9020163 CrossRefGoogle Scholar
  5. Aletor VA (1995) Compositional studies on edible tropical species of mushrooms. Food Chem 54:265–268.  https://doi.org/10.1016/0308-8146(95)00044-J CrossRefGoogle Scholar
  6. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Team WHOLC (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671.  https://doi.org/10.1371/journal.pone.0035671 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arsenault BJ, Rana JS, Stroes ES, Despres JP, Shah PK, Kastelein JJ, Wareham NJ, Boekholdt SM, Khaw KT (2009) Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol 55:35–41.  https://doi.org/10.1016/j.jacc.2009.07.057 CrossRefPubMedGoogle Scholar
  8. Aryal HR, Budathoki U (2016) Ethnomycology of Termitomyces R. Heim in Nepal. J Yeast Fungal Res 7:28–38CrossRefGoogle Scholar
  9. Aviram M (1993) Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98:1–9.  https://doi.org/10.1016/0021-9150(93)90217-I CrossRefPubMedGoogle Scholar
  10. Batra LR, Batra SWT (1979) Termite-fungus mutualism. In: Batra LR (ed) Insect-fungus symbiosis: nutrition, mutualism and commensalism. Allanheld, Osmun & Co., Montclair, New Jersey, pp 117–163Google Scholar
  11. Bhanja SK, Nandan CK, Mandal S, Bhunia B, Maiti TK, Mondal S, Islam SS (2012) Isolation and characterization of the immunostimulating β-glucans of an edible mushroom Termitomyces robustus var. Carbohydr Res 357:83–89.  https://doi.org/10.1016/j.carres.2012.04.007 CrossRefPubMedGoogle Scholar
  12. Chakraborty I, Mondal S, Rout D, Islam SS (2006) A water-insoluble (1→3)-β-D-glucan from the alkaline extract of an edible mushroom Termitomyces eurhizus. Carbohydr Res 341:2990–2993.  https://doi.org/10.1016/j.carres.2006.09.009 CrossRefPubMedGoogle Scholar
  13. Chandra K, Ghosh K, Roy SK, Mondal S, Maiti D, Ojha AK, Das D, Mondal S, Islam SS (2007) A water-soluble glucan isolated from an edible mushroom Termitomyces microcapus. Carbohydr Res 342:2484–2489.  https://doi.org/10.1016/j.carres.2007.07.013 CrossRefPubMedGoogle Scholar
  14. Chandrawati PS, Narendra K, Tripathi NN (2014) Macrofungal wealth of Kusumhi forest of Gorakhpur, UP, India. Am Int J Res Int Form Appl Nat Sci 5:71–75Google Scholar
  15. Cheah IK, Halliwell B (2012) Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 1822:784–793.  https://doi.org/10.1016/j.bbadis.2011.09.017 CrossRefPubMedGoogle Scholar
  16. Cheung LM, Cheung PCK (2005) Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem 89:403–409.  https://doi.org/10.1016/j.foodchem.2004.02.049 CrossRefGoogle Scholar
  17. Choi JH, Maeda K, Nagai K, Harada E, Kawade M, Hirai H, Kawagishi H (2010) Termitomycamides A to E, fatty acid amides isolated from the mushroom Termitomyces titanicus, suppress endoplasmic reticulum stress. Org Lett 12:5012–5015.  https://doi.org/10.1021/ol102186p CrossRefPubMedGoogle Scholar
  18. Ferreira IC, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560.  https://doi.org/10.2174/092986709787909587 CrossRefPubMedGoogle Scholar
  19. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457CrossRefPubMedGoogle Scholar
  20. Fulda S, Kroemer G (2009) Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 14:885–890.  https://doi.org/10.1016/j.drudis.2009.05.015 CrossRefPubMedGoogle Scholar
  21. Gbolagade J, Ajayi A, Oku I, Wankasi D (2006) Nutritive value of common wild edible mushrooms from southern Nigeria. Glob J Biotechnol Biochem 1:16–21Google Scholar
  22. Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42:577–587.  https://doi.org/10.1016/j.foodres.2009.02.019 CrossRefGoogle Scholar
  23. Hsieh HM, Chung MC, Chen PY, Hsu FM, Liao WW, Sung AN, Lin CR, Wang CJR, Kao YH, Fang MJ, Lai CY, Huang CC, Chou JC, Chou WN, Chang BCH, Ju YM (2017) A termite symbiotic mushroom maximizing sexual activity at growing tips of vegetative hyphae. Bot Stud 58(39):1–14.  https://doi.org/10.1186/s40529-017-0191-9 CrossRefGoogle Scholar
  24. Johnsy G, Kaviyarasan V (2014) Evaluation of antioxidant activities and determination of bioactive compounds in two wild edible Termitomyces (T. microcarpus and T. heimii). World J Dairy Food Sci 9:10–19Google Scholar
  25. Jonathan SG, Kigigha LT, Ohimain E (2008) Evaluation of the inhibitory potentials of eight higher Nigerian fungi against pathogenic microorganisms. Afr J Biomed Res 11:197–202Google Scholar
  26. Kinge TR, Apalah NA, Nji TM, Acha AN, Mih AM (2017) Species richness and traditional knowledge of macrofungi (mushrooms) in the Awing forest reserve and communities, northwest region, Cameroon. J Mycol 2017(2809239):1–9Google Scholar
  27. Lu YY, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH (2008) Analgesic and anti-inflammatory effects of the dry matter of culture broth of Termitomyces albuminosus and its extracts. J Ethnopharmacol 120:432–436.  https://doi.org/10.1016/j.jep.2008.09.021 CrossRefPubMedGoogle Scholar
  28. Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, Wang Y (2012) Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 7:e35835.  https://doi.org/10.1371/journal.pone.0035835 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Majumder R, Banik SP, Khowala S (2016) AkP from mushroom Termitomyces clypeatus is a proteoglycan specific protease with apoptotic effect on HepG2. Int J Biol Macromol 91:198–207.  https://doi.org/10.1016/j.ijbiomac.2016.05.034 CrossRefPubMedGoogle Scholar
  30. Mallick S, Dutta A, Dey S, Ghosh J, Mukherjee D, Sultana SS, Mandal S, Paloi S, Khatua S, Acharya K, Pal C (2014) Selective inhibition of Leishmania donovani by active extracts of wild mushrooms used by the tribal population of India: an in vitro exploration for new leads against parasitic protozoans. Exp Parasitol 138:9–17.  https://doi.org/10.1016/j.exppara.2014.01.002 CrossRefPubMedGoogle Scholar
  31. Manna DK, Nandi AK, Pattanayak M, Maity P, Tripathy S, Mandal AK, Roy S, Tripathy SS, Gupta N, Islam SS (2015) A water soluble β-glucan of an edible mushroom Termitomyces heimii: structural and biological investigation. Carbohydr Polym 134:375–384.  https://doi.org/10.1016/j.carbpol.2015.07.099 CrossRefPubMedGoogle Scholar
  32. Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118.  https://doi.org/10.1016/j.foodchem.2003.10.026 CrossRefGoogle Scholar
  33. Miura S, Watanabe J, Sano M, Tomita T, Osawa T, Hara Y, Tomita I (1995) Effects of various natural antioxidants on the Cu2+-mediated oxidative modification of low-density-lipoprotein. Biol Pharm Bull 18:1–4CrossRefPubMedGoogle Scholar
  34. Mondal S, Chakraborty I, Pramanik M, Rout D, Islam SS (2004) Structural studies of water-soluble polysaccharides of an edible mushroom, Termitomyces eurhizus. A reinvestigation. Carbohydr Res 339:1135–1140.  https://doi.org/10.1016/j.carres.2004.02.019 CrossRefPubMedGoogle Scholar
  35. Mondal S, Chakraborty I, Rout D, Islam SS (2006) Isolation and structural elucidation of a water-soluble polysaccharide (PS-I) of a wild edible mushroom, Termitomyces striatus. Carbohydr Res 341:878–886.  https://doi.org/10.1016/j.carres.2006.02.004 CrossRefPubMedGoogle Scholar
  36. Mondal S, Chandra K, Maiti D, Ojha AK, Das D, Roy SK, Ghosh K, Chakarborty I, Islam SS (2008) Chemical analysis of a new fucoglucan isolated from an edible mushroom, Termitomyces robustus. Carbohydr Res 343:1062–1070.  https://doi.org/10.1016/j.carres.2008.02.017 CrossRefPubMedGoogle Scholar
  37. Mondal A, Banerjee D, Majumder R, Maity TK, Khowala S (2016) Evaluation of in vitro antioxidant, anticancer and in vivo antitumour activity of Termitomyces clypeatus MTCC 5091. Pharm Biol 54:2536–2546.  https://doi.org/10.3109/13880209.2016.1168854 CrossRefPubMedGoogle Scholar
  38. Moro C, Palacios I, Lozano M, D’Arrigo M, Guillamón E, Villares A, Martínez JA, García-Lafuente A (2012) Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 130:350–355CrossRefGoogle Scholar
  39. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595.  https://doi.org/10.1146/annurev.ecolsys.36.102003.152626 CrossRefGoogle Scholar
  40. Nakalembe I, Kabasa JD, Olila D (2015) Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. Spring 4:433–447.  https://doi.org/10.1186/s40064-015-1188-z CrossRefGoogle Scholar
  41. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40:195–211.  https://doi.org/10.1016/j.pop.2012.11.003 CrossRefPubMedGoogle Scholar
  42. Njue AW, Omolo JO, Cheplogoi PK, Langat MK, Mulholland DA (2018) Cytotoxic ergostane derivatives from the edible mushroom Termitomyces microcarpus (Lyophyllaceae). Biochem Syst Ecol 76:12–14CrossRefGoogle Scholar
  43. Ogundana SK, Fagade OE (1982) Nutritive-value of some Nigerian edible mushrooms. Food Chem 8:263–268.  https://doi.org/10.1016/0308-8146(82)90028-0 CrossRefGoogle Scholar
  44. Oso BA (1977) Mushrooms in Yoruba mythology and medicinal practices. Econ Bot 31:367–371.  https://doi.org/10.1007/Bf02866888 CrossRefGoogle Scholar
  45. Oyetayo OV (2011) Medicinal uses of mushrooms in Nigeria: towards full and sustainable exploitation. Afr J Tradit Complement Altern Med 8:267–274PubMedPubMedCentralGoogle Scholar
  46. Pattanayak M, Samanta S, Maity P, Sen IK, Nandi AK, Manna DK, Mitra P, Acharya K, Islam SS (2015) Heteroglycan of an edible mushroom Termitomyces clypeatus: structure elucidation and antioxidant properties. Carbohydr Res 413:30–36.  https://doi.org/10.1016/j.carres.2015.05.005 CrossRefPubMedGoogle Scholar
  47. Pegler DN, Piearce GD (1980) The edible mushrooms of Zambia. Kew Bull 35:475–491CrossRefGoogle Scholar
  48. Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349:11–19.  https://doi.org/10.1007/s11010-010-0655-7 CrossRefGoogle Scholar
  49. Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006) Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 54:9764–9772.  https://doi.org/10.1021/jf0615707 CrossRefPubMedGoogle Scholar
  50. Qi JH, Ojika M, Sakagami Y (2000) Termitomycesphins A-D, novel neuritogenic cerebrosides from the edible Chinese mushroom Termitomyces albuminosus. Tetrahedron 56:5835–5841.  https://doi.org/10.1016/S0040-4020(00)00548-2 CrossRefGoogle Scholar
  51. Qi JH, Ojika M, Sakagami Y (2001) Neuritogenic cerebrosides from an edible Chinese mushroom. Part 2: structures of two additional termitomycesphins and activity enhancement of an inactive cerebroside by hydroxylation. Bioorg Med Chem 9:2171–2177CrossRefPubMedGoogle Scholar
  52. Qu Y, Sun K, Gao L, Sakagami Y, Kawagishi H, Ojika M, Qi J (2012) Termitomycesphins G and H, additional cerebrosides from the edible Chinese mushroom Termitomyces albuminosus. Biosci Biotechnol Biochem 76:791–793.  https://doi.org/10.1271/bbb.110918 CrossRefPubMedGoogle Scholar
  53. Sachan SKS, Patra JK, Thatoi HN (2013) Indigenous knowledge of ethnic tribe for utilization of wild mushrooms as food and medicine in similipal biosphere reserve, Odisha, India. J Agric Technol 9:335–348Google Scholar
  54. Sangvichien E, Taylor-Hawksworth PA (2001) Termitomyces mushrooms: a tropical delicacy. Mycologist 15:31–33CrossRefGoogle Scholar
  55. Sargunam SD, Johnsy G, Samuel AS, Kaviyarasan V (2012) Mushrooms in the food culture of the Kaani tribe of Kanyakumari district. Indian J Tradit Knowl 11:150–153Google Scholar
  56. Singha K, Pati BR, Mondal KC, Das Mohapatra PK (2017) Study of nutritional and antibacterial potential of some wild edible mushrooms from Gurguripal Ecoforest, West Bengal, India. Indian J Biotechnol 16:222–227Google Scholar
  57. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low-density lipoprotein by endothelial-cells involves lipid-peroxidation and degradation of low-density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887.  https://doi.org/10.1073/pnas.81.12.3883 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thatoi H, Singdevsachan SK (2014) Diversity, nutritional composition an medicinal potential of India mushrooms: a review. Afr J Biotechnol 13:523–545CrossRefGoogle Scholar
  59. Tibuhwa DD (2012) Folk taxonomy and use of mushrooms in communities around Ngorongoro and Serengeti National Park, Tanzania. J Ethnobiol Ethnomed 8:36–44.  https://doi.org/10.1186/1746-4269-8-36 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Venkatachalapathi A, Paulsamy S (2016) Exploration of wild medicinal mushroom species in Walayar valley, the Southern Western Ghats of Coimbatore District Tamil Nadu. Mycosphere 7:118–130.  https://doi.org/10.5943/mycosphere/7/2/3 CrossRefGoogle Scholar
  61. Wang S-L (2013) The antagonism of Termitomyces albuminosus polysaccharide to cyclophosphamide on immune organ injury in mice. Prog Vet Med 34:56–59Google Scholar
  62. Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR (2014) Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem 157:30–36.  https://doi.org/10.1016/j.foodchem.2014.02.014 CrossRefPubMedGoogle Scholar
  63. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: Cell life and death decisions. J Clin Investig 115:2656–2664.  https://doi.org/10.1172/JCI26373
  64. Ying J, Mao X, Ma Q, Zong Y, Wen H (1987) Icones of medicinal fungi from China. Science Press, BeijingGoogle Scholar
  65. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19.  https://doi.org/10.1016/j.tifs.2006.07.013 CrossRefGoogle Scholar
  66. Zhao YX, Tao MX, Cheng GY, Xing J, Lu WJ (2015) Effects of polysaccharides from Termitomyces albuminosus on pathological liver ultrastructure and gene expression in mice with alcoholic liver injury. Food Sci 36:195–199Google Scholar
  67. Zhao H, Li S, Zhang J, Che G, Zhou M, Liu M, Zhang C, Xu N, Lin L, Liu Y, Jia L (2016) The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus. Carbohydr Polym 151:1227–1234.  https://doi.org/10.1016/j.carbpol.2016.06.058 CrossRefPubMedGoogle Scholar
  68. Zhao HJ, Li J, Zhang JJ, Wang XX, Liu M, Zhang C, Jia L (2017) Hepatoprotective and in vitro antioxidant effects of native depolymerised-exopolysaccharides derived from Termitomyces albuminosus. Sci Rep 7(3910):1–13.  https://doi.org/10.1038/s41598-017-04171-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan

Personalised recommendations