Skip to main content

Advertisement

Log in

A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Acknowledgements

The authors gratefully thank Klára Katonáné Lehoczky for excellent technical assistance. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program.” This work was supported by the European Union and European Regional Development Fund (GINOP-2.3.2-15-2016-00001).

Funding

This study was funded by the European Union and co-financed by the European Social Fund (grant agreement no. TÁMOP-4.2.4.A/2-11/1-2012-0001 “National Excellence Program”) and by the GINOP-2.3.2-15-2016-00001 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Rákhely.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

The research presented did not involve any human participants.

Electronic supplementary material

ESM 1

(PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duzs, Á., Tóth, A., Németh, B. et al. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Appl Microbiol Biotechnol 102, 5133–5147 (2018). https://doi.org/10.1007/s00253-018-8973-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8973-x

Keywords