Skip to main content

Advertisement

Log in

Lead absorption mechanisms in bacteria as strategies for lead bioremediation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria exhibit a number of metabolism-dependent and metabolism-independent processes for the uptake and accumulation of toxic metals. The removal of these metals from environmental sources such as soil, sludge, and wastewaters using microbe-based technologies provide an alternative for their recovery and remediation. Lead (Pb) is a pervasive metal in the environment that adversely affects all living organisms. Many aspects of metal-microbe interactions remain unexploited in biotechnology and further development and application is necessary, particularly to the problem of Pb release into the environment. Thus, this review provides a synopsis of the most important bacterial phenotypes and biochemical attributes that are instrumental in lead bioremediation, along with what is known of their genetic background that can be exploited or improved through genetic engineering. This review also highlights the potential of Pb-resistant bacteria in bringing about detoxification of Pb-contaminated terrestrial and aquatic systems in a highly sustainable and environmental friendly manner, and the existing challenges that still lie in the path to in situ and large-scale bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aiking H, Govers H, van’t Riet J (1985) Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 50:1262–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akmal M, Jianming X (2009) Microbial biomass and bacterial community changes by Pb contamination in acidic soil. J Agric Biol Sci 1:30–37

    Google Scholar 

  • Al-Aoukaty A, Appanna VD, Huang J (1991) Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC13525 is mediated by the phosphate content of the growth medium. FEMS Microbiol Lett 83:283–290

    CAS  Google Scholar 

  • Almaguer-Cantú V, Morales-Ramos LH, Balderas-Rentería I (2011) Biosorption of lead (II) and cadmium (II) using Escherichia coli genetically engineered with mice metallothionein I. Water Sci Technol 63:1607–1613

    PubMed  Google Scholar 

  • Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide producing halophilic bacterium. Prog Biol Sci 2:1–11

    Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substances (EPS) a carrier of heavy metals in the marine food-chain. Environ Int 32:192–198

    Google Scholar 

  • Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothione in sand SmtA-like fingers. Mol Microbiol 45:1421–1432

    CAS  PubMed  Google Scholar 

  • Boeckx RL (1986) Lead poisoning in children. Anal Chem 58:274A–288A

    CAS  PubMed  Google Scholar 

  • Bowman N, Patel D, Sanchez A, Xu W, Alsaffar A, Tiquia-Arashiro SM (2018) Lead-resistant bacteria from Saint Clair River sediments and Pb removal in aqueous solutions. Appl Microbiol Biotechnol 102:2391–2398

    CAS  PubMed  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ (2010) Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep 2:419–425

    CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CAS  PubMed  Google Scholar 

  • Chen S, Wilson DB (1997) Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments. Appl Environ Microbiol 63:2442–2445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Pan X, Chen H, Lin Z, Guan X (2015) Investigation of lead(II) uptake by Bacillus thuringiensis 016. World J Microbiol Biotechnol 31:1729–1736

    CAS  PubMed  Google Scholar 

  • Cleveland LM, Minter ML, Cobb KA, Scott AA, German VF (2008) Lead hazards for pregnant women and children. Am J Nurs 108:40–49.

  • Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984

    CAS  PubMed  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    CAS  PubMed  Google Scholar 

  • Elliott HA, Liberati MR, Huang CP (1986) Competitive adsorption of heavy metals by soils. J Environ Qual 15:214–219

    CAS  Google Scholar 

  • Enger ED, Smith BF (1992) Hazardous and toxic wastes. In: Enger ED, Smith BF (eds) Environmental science: a study of interrelationships, 4th ed. WC C Brown publishers, pp 444–464

    Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    CAS  PubMed  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegrad 62:195–203

    CAS  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    CAS  Google Scholar 

  • Grant LD (2009) Lead and compounds. In: Lippmann M (ed) Environmental toxicants: human exposures and their health effects. 3rd edition. Wiley-Interscience, pp 758–809

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Google Scholar 

  • Hamer DH (1986) Metallothioneins. Annu Rev Biochem 55:913–951

    CAS  PubMed  Google Scholar 

  • Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97:692–700

    CAS  PubMed  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MO (1984) Cadmium resistant Pseudomas putida synthesizes novel cadmium binding proteins. Science 225:1043–1046

    CAS  PubMed  Google Scholar 

  • Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187

    CAS  PubMed  Google Scholar 

  • Jafarian V, Ghaffari F (2017) A unique metallothionein-engineered in Escherichia coli for biosorption of lead, zinc, and cadmium; absorption or adsorption? Microbiology 86:73–81

    CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    PubMed  PubMed Central  Google Scholar 

  • Jarosławiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiology 160:12–25

    PubMed  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69.

  • Kalita D, Joshi SR (2017) Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep 16:48–57

    Google Scholar 

  • Kumar M, Upreti RK (2000) Impact of lead stress and adaptation in Escherichia coli. Ecotoxicol Environ Saf 47:246–252

    CAS  PubMed  Google Scholar 

  • Kundu D, Mondal S, Dutta D, Haque S, Ghosh AR (2016) Accumulation and contamination of lead in different trophic levels of food chain in sewage-fed East Kolkata Wetland, West Bengal, India. Int J Environ Tech Sci 2:61–68

    Google Scholar 

  • Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53−60

    PubMed  Google Scholar 

  • Leung WC, Wong MF, Chua H, Lo W, Yu PHF, Leung CK (2000) Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Water Sci Technol 41:233–240

    CAS  Google Scholar 

  • Levinson HS, Mahler I, Blackwelder P, Hood T (1996) Lead resistance and sensitivity in Staphylococcus aureus. FEMS Microbiol Lett 145:421–425

    CAS  PubMed  Google Scholar 

  • Li M, Cheng X, Guo H, Yang Z (2015) Biomineralization of carbonate by Terrabacter tumescens for heavy metal removal and biogrouting applications. J Environ Eng https://doi.org/10.1061/(ASCE)EE.1943-7870.0000970. C4015005-C4015005

  • Li X, Peng W, Jia Y, Lu L, Fan W (2016) Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere 156:228–235

    CAS  PubMed  Google Scholar 

  • Liu T, Nakashima S, Hirose K, Uemura Y, Shibasaka M, Katsuhara M, Kasamo K (2003) A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacteria Oscillatoriabrevis. FEBS Lett 542:159–163

    CAS  PubMed  Google Scholar 

  • Lombardi PE, Peri SI, Verrengia NR (2010) ALA-D and ALA-Dreactivated as biomarkers of lead contamination in the fish Prochilodus lineatus. Ecotoxicol Environ Saf 73:1704–1711

    CAS  PubMed  Google Scholar 

  • Mejare M, Ljung S, Bulow L (1998) Selection of cadmium specificc hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11:489–494

    CAS  PubMed  Google Scholar 

  • Mire CE, Tourjee JA, O’Brien WF, Ramanujachary KV, Hecht GB (2004) Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol 70:855–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moncrieff AA, Koumides OP, Clayton BE, Patrick AD, Renwick AGC, Roberts GE (1964) Lead poisoning in children. Arch Dis Child 39:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mugwar AJ, Harbottle MJ (2016) Toxicity effects on metal sequestration by microbially- induced carbonate precipitation. J Hazard Mater 314:237–248

    CAS  PubMed  Google Scholar 

  • Murthy S, Geetha B, Sarangi SK (2011) Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. Afr J Biotechnol 10:15966–15972

    CAS  Google Scholar 

  • Mwandira W, Nakashima K, Kawasaki S (2017) Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine-grained sand. Ecol Eng 109:57–64

    Google Scholar 

  • Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414

    CAS  PubMed  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012a) Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation 23:775–783

    CAS  PubMed  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012b) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Saf 79:129–133

    CAS  PubMed  Google Scholar 

  • Naik MM, Shamim K, Dubey SK (2012c) Biological characterization of lead resistant bacteria to explore role of bacterial metallothionein in lead resistance. Curr Sci 103:1–3

    Google Scholar 

  • Naik MM, Khanolkar DS, Dubey SK (2013) Lead resistant Providentia alcalifaciens strain 2EA bioprecipitates Pb2+ as lead phosphate. Lett Appl Microbiol 56:99–104

    CAS  PubMed  Google Scholar 

  • Nian R, Kim DS, Nguyen T, Tan L, Kim CW, Yoo IK, Choe WS (2010) Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library. J Chromatogr A 1217:5940–5949

    CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  PubMed  Google Scholar 

  • Pagnanelli F, Papini MP, Toro L, Trifoni M, Veglio` F (2000) Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environ Sci Technol 34:2773–2778

    CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Bolan N, Meghraj M, Naidu N (2011) Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J Environ Manag 92:1115–1120

    CAS  Google Scholar 

  • Perez MPJA, Garcıa-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sanchez M (2008) Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J Microbiol Biotechnol 24:2699–2704

    Google Scholar 

  • Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2006) Production: composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa. Water Res 40:3759–3766

    CAS  PubMed  Google Scholar 

  • Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2007) Lead (Pb2+) adsorption characteristics and sugar composition of capsular polysaccharides of cyanobacterium Calothrix marchica. Songklanakarin, Songklanakarin. J Sci Technol 29:529–541

    Google Scholar 

  • Rifaat HM, Mahrous KF, Khalil WKB (2009) Effect of heavy metals upon metallothioneins in some Streptomyces species isolated from Egyptian soil. J Appl Sci Environ Sanit 4:197–206

    Google Scholar 

  • Roanne TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb Ecol 37:218–224

    Google Scholar 

  • Sag Y, Tarar B, Kutsal T (2003) Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuous flow stirred reactors. Bioresour Technol 87:27–33

    CAS  PubMed  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Kumar B, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    CAS  PubMed  Google Scholar 

  • Santillan-Medrano J, Jurinak JJ (1975) The chemistry of lead and cadmium in soil: solid phase formation. Soil Sci Soc Am Proc 39:851–856

    CAS  Google Scholar 

  • Sharma J, Shamim K, Dubeya SK, Meena RM (2017) Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicola strain SJ2A. Sci Tot Environ 579:359–365

    CAS  PubMed  Google Scholar 

  • Schwab AP, He YH, Banks MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866

    CAS  PubMed  Google Scholar 

  • Shen L, Xia JL, He H, Nie ZY (2008) Comparative study on biosorption of Pb(II) and Cr(VI) by Synechococcus sp. Trans Nonferrous Metals Soc 18:1336–1342

    CAS  Google Scholar 

  • Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, vander Lelie D (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonievan Leeuwenhoek 96:171–182

    CAS  Google Scholar 

  • Templeton AS, Trainor TP, Spormann AM, Newville M, Sutton SR, Dohnalkova A, Gorby Y, Brown GE (2003) Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environ Sci Technol 37:300–307

    CAS  PubMed  Google Scholar 

  • Tong S, von Schirnding YE, Prapamontol T (2000) Environmental lead exposure: a public health problem of global dimensions. Bull World Health Org 78:1068–1077

    CAS  PubMed  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    CAS  PubMed  Google Scholar 

  • Turner JS, Glands PD, Samson ACR, Robinson NJ (1996) Zn2+-sensing by the cyanobacterial metallothione in repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucl Acid Res 24:3714–3721

    CAS  Google Scholar 

  • Varenyam A, Pan X, Zhang D, Fu Q (2012) Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol 22:244–247

    Google Scholar 

  • Veglio F, Beolchini F, Gasbarro A (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    CAS  Google Scholar 

  • Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713−716

    Google Scholar 

  • Wei W, Zhu T, Wang Y, Yang H, Hao Z, Chen PR, Zhao J (2012) Engineering a gold-specific regulon for cell-based visual detection and recovery of gold. Chem Sci 3:1780–1784

    CAS  Google Scholar 

  • Wei W, Liu X, Sun P, Wang X, Zhu H, Hong M, Mao ZW, Zhao J (2014) Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environ Sci Technol 48:3363−3371

    Google Scholar 

  • Xie B, Gu JD, Li XY (2006) Protein profiles of extracellular polymeric substances and activated sludge in a membrane biological reactor by 2-dimensional gel electrophoresis. Water Sci Technol 6:27–33

    CAS  Google Scholar 

Download references

Acknowledgements

Work in author’s laboratory is funded by the Office of Research and Sponsored Programs at the University of Michigan-Dearborn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia M. Tiquia-Arashiro.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiquia-Arashiro, S.M. Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl Microbiol Biotechnol 102, 5437–5444 (2018). https://doi.org/10.1007/s00253-018-8969-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8969-6

Keywords

Navigation