High diversity of potential nitrate-reducing Fe(II)-oxidizing bacteria enriched from activated sludge

  • Liangying Zhang
  • Haohao Sun
  • Xu-xiang Zhang
  • Hongqiang Ren
  • Lin Ye
Environmental biotechnology
  • 39 Downloads

Abstract

Nitrate-dependent Fe(II) oxidation (NDFO) has been discovered in various environments including activated sludge and can potentially be used to remove nitrate from wastewater. In this study, NDFO sludge was successfully enriched from activated sludge under high Fe(II) concentrations over 100 days and the denitrification rate achieved 1.37 mmol N/(gVSS day). High-throughput sequencing of the bacterial 16S rRNA gene was used to investigate the microbial community structure dynamics during the enrichment process. The results showed that the microbial community changed significantly and high diversity of potential Fe(II)-oxidizing bacteria (FeOB) was observed in the enriched sludge. Thermomonas and Gallionella were the dominant bacterial genera in the enriched sludge and their relative abundances accounted for 9.49 and 4.08%, respectively. Furthermore, it was found that potential FeOB were also abundantly present in activated sludge samples of common municipal wastewater treatment plants. Collectively, this study demonstrated that NDFO could be successfully performed by enriched activated sludge and high diversity of bacteria is involved in this process, and the results also provide baseline information for future research and engineering application of NDFO process.

Keywords

NDFO Microbial community Fe(II)-oxidizing bacteria Activated sludge 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8961_MOESM1_ESM.pdf (208 kb)
ESM 1 (PDF 208 kb)

References

  1. APAH (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DCGoogle Scholar
  2. Busse H, Kämpfer P, Moore E, Nuutinen J, Tsitko I, Denner E, Vauterin L, Valens M, Rosselló-Mora R, Salkinoja-Salonen M (2002) Thermomonas haemolytica gen. nov., sp. nov., a gamma-proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52(2):473–483.  https://doi.org/10.1099/00207713-52-2-473 CrossRefPubMedGoogle Scholar
  3. Byrne-Bailey KG, Weber KA, Bose S, Knox T, Spanbauer TL, Chertkov O, Coates JD (2010) Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. J Bacteriol 192(5):1475–1476.  https://doi.org/10.1128/JB.01449-09 CrossRefPubMedGoogle Scholar
  4. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD (2013) Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195(14):3260–3268.  https://doi.org/10.1128/jb.00058-13 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chakraborty A, Roden EE, Schieber J, Picardal F (2011) Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl Environ Microbiol 77(24):8548–8556.  https://doi.org/10.1128/aem.06214-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142(4):785–790.  https://doi.org/10.1099/00221287-142-4-785 CrossRefGoogle Scholar
  8. Emerson D (2012) Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem Soc 40:1211–1216.  https://doi.org/10.1042/bst20120154 CrossRefGoogle Scholar
  9. Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63(12):4784–4792PubMedPubMedCentralGoogle Scholar
  10. Emerson D, Weiss JV (2004) Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol J 21(6):405–414.  https://doi.org/10.1080/01490450490485881 CrossRefGoogle Scholar
  11. Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583.  https://doi.org/10.1146/annurev.micro.112408.134208 CrossRefPubMedGoogle Scholar
  12. Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. Microbiology 137(11):2657–2661Google Scholar
  13. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4(1):17–27.  https://doi.org/10.1038/ismej.2009.97 CrossRefPubMedGoogle Scholar
  14. Hauck S, Benz M, Brune A, Schink B (2001) Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS Microbiol Ecol 37(2):127–134.  https://doi.org/10.1111/j.1574-6941.2001.tb00860.x CrossRefGoogle Scholar
  15. Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157(6):1551–1564.  https://doi.org/10.1099/mic.0.045344-0 CrossRefPubMedGoogle Scholar
  16. Hegler F, Lösekann-Behrens T, Hanselmann K, Behrens S, Kappler A (2012) Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring. Appl Environ Microbiol 78(20):7185–7196.  https://doi.org/10.1128/AEM.01440-12 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kappler A, Straub KL (2005) Geomicrobiological cycling of iron. Rev Mineral Geochem 59(1):85–108.  https://doi.org/10.2138/rmg.2005.59.5 CrossRefGoogle Scholar
  18. Klueglein N, Zeitvogel F, Stierhof Y-D, Floetenmeyer M, Konhauser KO, Kappler A, Obst M (2014) Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl Environ Microbiol 80(3):1051–1061.  https://doi.org/10.1128/aem.03277-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kumaraswamy R, Sjollema K, Kuenen G, Van Loosdrecht M, Muyzer G (2006) Nitrate-dependent [Fe(II)EDTA]2− oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Syst Appl Microbiol 29(4):276–286.  https://doi.org/10.1016/j.syapm.2005.08.001 CrossRefPubMedGoogle Scholar
  20. Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A (2016a) Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe (II) oxidizers and Fe (III) reducers in coastal marine sediment. Appl Environ Microbiol 82(5):1433–1447CrossRefPubMedCentralGoogle Scholar
  21. Laufer K, Røy H, Jørgensen BB, Kappler A (2016b) Evidence for the existence of autotrophic nitrate-reducing Fe (II)-oxidizing bacteria in marine coastal sediment. Appl Environ Microbiol 82(20):6120–6131.  https://doi.org/10.1128/AEM.01570-16 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lee CS, Kim KK, Aslam Z, Lee S-T (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57(8):1775–1779.  https://doi.org/10.1099/ijs.0.65086-0 CrossRefPubMedGoogle Scholar
  23. Li B, Tian C, Zhang D, Pan X (2014) Anaerobic nitrate-dependent iron (II) oxidation by a novel autotrophic bacterium, Citrobacter freundii strain PXL1. Geomicrobiol J 31(2):138–144.  https://doi.org/10.1080/01490451.2013.816393 CrossRefGoogle Scholar
  24. McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D (2011) Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77(4):1405–1412.  https://doi.org/10.1128/AEM.02095-10 CrossRefPubMedGoogle Scholar
  25. McBeth JM, Fleming EJ, Emerson D (2013) The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. Environ Microbiol Rep 5(3):453–463.  https://doi.org/10.1111/1758-2229.12033 CrossRefPubMedGoogle Scholar
  26. Mergaert J, Cnockaert MC, Swings J (2003) Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly (ε-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. Int J Syst Evol Microbiol 53(6):1961–1966.  https://doi.org/10.1099/ijs.0.02684-0 CrossRefPubMedGoogle Scholar
  27. Miot J, Maclellan K, Benzerara K, Boisset N (2011) Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron (II)-oxidizing bacteria: a cryo-electron microscopy study. Geobiology 9(6):459–470.  https://doi.org/10.1111/j.1472-4669.2011.00298.x CrossRefPubMedGoogle Scholar
  28. Muehe EM, Gerhardt S, Schink B, Kappler A (2009) Ecophysiology and the energetic benefit of mixotrophic Fe (II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiol Ecol 70(3):335–343.  https://doi.org/10.1111/j.1574-6941.2009.00755.x CrossRefPubMedGoogle Scholar
  29. Nielsen JL, Nielsen PH (1998) Microbial nitrate-dependent oxidation of ferrous iron in activated sludge. Environ Sci Technol 32(22):3556–3561.  https://doi.org/10.1021/es9803299 CrossRefGoogle Scholar
  30. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18(5):1403–1414.  https://doi.org/10.1111/1462-2920.13023 CrossRefPubMedGoogle Scholar
  31. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schädler S, Burkhardt C, Hegler F, Straub K, Miot J, Benzerara K, Kappler A (2009) Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe (II)-oxidizing bacteria. Geomicrobiol J 26(2):93–103.  https://doi.org/10.1080/01490450802660573 CrossRefGoogle Scholar
  33. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sobolev D, Roden EE (2001) Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe (II) and oxygen at circumneutral pH. Appl Environ Microb 67(3):1328–1334.  https://doi.org/10.1128/AEM.67.3.1328-1334.2001 CrossRefGoogle Scholar
  35. Straub KL, Buchholz-Cleven BE (1998) Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl Environ Microbiol 64(12):4846–4856PubMedPubMedCentralGoogle Scholar
  36. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62(4):1458–1460PubMedPubMedCentralGoogle Scholar
  37. Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21(6):371–378.  https://doi.org/10.1080/01490450490485854 CrossRefGoogle Scholar
  38. Tang C-j, Zheng P, Wang C-h, Mahmood Q (2010) Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor. Bioresour Technol 101(6):1762–1768.  https://doi.org/10.1016/j.biortech.2009.10.032 CrossRefPubMedGoogle Scholar
  39. Ushiki N, Jinno M, Fujitani H, Suenaga T, Terada A, Tsuneda S (2017) Nitrite oxidation kinetics of two Nitrospira strains: the quest for competition and ecological niche differentiation. J Biosci Bioeng 123(5):581–589.  https://doi.org/10.1016/j.jbiosc.2016.12.016 CrossRefPubMedGoogle Scholar
  40. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang R, Zheng P, Xing Y-J, Zhang M, Ghulam A, Z-q Z, Li W, Wang L (2014) Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture. J Ind Microbiol Biotechnol 41(5):803–809.  https://doi.org/10.1007/s10295-014-1424-5 CrossRefPubMedGoogle Scholar
  42. Wanner J (1994) Activated sludge: bulking and foaming control. CRC Press, Boca RatonGoogle Scholar
  43. Weber KA, Picardal FW, Roden EE (2001) Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environ Sci Technol 35(8):1644–1650.  https://doi.org/10.1021/es0016598 CrossRefPubMedGoogle Scholar
  44. Weber KA, Pollock J, Cole KA, O’Connor SM, Achenbach LA, Coates JD (2006) Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl Environ Microbiol 72(1):686–694.  https://doi.org/10.1128/aem.72.1.686-694.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362(6423):834–836.  https://doi.org/10.1038/362834a0 CrossRefGoogle Scholar
  46. Zhang T, Shao M-F, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147.  https://doi.org/10.1038/ismej.2011.188 CrossRefPubMedGoogle Scholar
  47. Zhang J, Yang G, Zhou S, Wang Y, Yuan Y, Zhuang L (2013) Fontibacter ferrireducens sp. nov., an Fe (III)-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(3):925–929.  https://doi.org/10.1099/ijs.0.040998-0 CrossRefPubMedGoogle Scholar
  48. Zhang M, Zheng P, Wang R, Li W, Lu H, Zhang J (2014) Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology. Chemosphere 117:604–609.  https://doi.org/10.1016/j.chemosphere.2014.09.029 CrossRefPubMedGoogle Scholar
  49. Zhang M, Zheng P, Li W, Wang R, Ding S, Abbas G (2015) Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification. Bioresour Technol 179:543–548.  https://doi.org/10.1016/j.biortech.2014.12.036 CrossRefPubMedGoogle Scholar
  50. Zhou J, Wang H, Yang K, Ji B, Chen D, Zhang H, Sun Y, Tian J (2016) Autotrophic denitrification by nitrate-dependent Fe (II) oxidation in a continuous up-flow biofilter. Bioprocess Biosyst Eng 39(2):277–284.  https://doi.org/10.1007/s00449-015-1511-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina

Personalised recommendations