Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 11, pp 4901–4913 | Cite as

Microbial and genomic characterization of Geobacillus thermodenitrificans OS27, a marine thermophile that degrades diverse raw seaweeds

  • Kenta Fujii
  • Yurie Tominaga
  • Jyumpei Okunaka
  • Hisashi Yagi
  • Takashi Ohshiro
  • Hirokazu Suzuki
Applied microbial and cell physiology

Abstract

Seaweeds are a nonlignocellulosic biomass, but they are often abundant in unique polysaccharides that common microbes can hardly utilize; therefore, polysaccharide degradation is key for the full utilization of seaweed biomass. Here, we isolated 13 thermophiles from seaweed homogenates that had been incubated at high temperature. All of the isolates were Gram-positive and preferentially grew at 60–70 °C. Most formed endospores and were tolerant to seawater salinity. Despite different sources, all isolates were identical regarding 16S rRNA gene sequences and were categorized as Geobacillus thermodenitrificans. Their growth occurred on seaweed polysaccharides with different profiles but required amino acids and/or vitamins, implying that they existed as proliferative cells by utilizing nutrients on seaweed viscous surfaces. Among 13 isolates, strain OS27 was further characterized to show that it can utilize a diverse range of seaweed polysaccharides and hemicelluloses. Notably, strain OS27 degraded raw seaweeds while releasing soluble saccharides. The degradation seemed to depend on enzymes that were extracellularly produced in an inducible manner. The strain could be genetically modified to produce heterologous endoglucanase, providing a transformant that degrades more diverse seaweeds with higher efficiency. The draft sequences of the OS27 genome contained 3766 coding sequences, which included intact genes for 28 glycoside hydrolases and many hypothetical proteins unusual among G. thermodenitrificans. These results suggest that G. thermodenitrificans OS27 serves as a genetic resource for thermostable enzymes to degrade seaweeds and potentially as a microbial platform for high temperature seaweed biorefinery via genetic modification.

Keywords

Degradation Genome Geobacillus thermodenitrificans Macroalga Seaweed Thermophile 

Notes

Acknowledgments

The authors thank Dr. Toshihiko Sakurai (Tottori University) for his help with the microscopic analysis, and Marine Products Kimuraya Co., Ltd. for providing fucoidan.

Funding

This work was in part founded by JSPS KAKENHI (Grant number: 25450105).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574.  https://doi.org/10.1007/s10811-008-9384-7 CrossRefGoogle Scholar
  2. Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P (2016) Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39:527–533.  https://doi.org/10.1016/j.syapm.2016.09.004 CrossRefPubMedGoogle Scholar
  3. Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7:72.  https://doi.org/10.1186/s13568-017-0375-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baghel RS, Trivedi N, Gupta V, Neori A, Reddy CRK, Lali A, Jha B (2015) Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem 17:2436–2443.  https://doi.org/10.1039/c4gc02532f CrossRefGoogle Scholar
  5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.  https://doi.org/10.1093/nar/29.12.2607 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cho Y, Kim H, Kim S (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36:713–719.  https://doi.org/10.1007/s00449-013-0895-5 CrossRefPubMedGoogle Scholar
  8. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408.  https://doi.org/10.1016/j.ymben.2009.08.005 CrossRefPubMedGoogle Scholar
  9. Daas MJA, van de Weijer AHP, de Vos WM, van der Oost J, van Kranenburg R (2016) Isolation of a genetically accessible thermophilic xylan degrading bacterium from compost. Biotechnol Biofuels 9:210.  https://doi.org/10.1186/s13068-016-0618-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daas MJA, Vriesendorp B, van de Weijer AHP, van der Oost J, van Kranenburg R (2018) Complete genome sequence of Geobacillus thermodenitrificans T12, a potential host for biotechnological applications. Curr Microbiol 75:49–56.  https://doi.org/10.1007/s00284-017-1349-0 CrossRefPubMedGoogle Scholar
  11. De Maayer P, Brumm PJ, Mead DA, Cowan DA (2014) Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics 15:836.  https://doi.org/10.1186/1471-2164-15-836 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  13. Enquist-Newman M, AME F, Bravo DD, CNS S, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–246.  https://doi.org/10.1038/nature12771 CrossRefPubMedGoogle Scholar
  14. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607.  https://doi.org/10.1073/pnas.0609650104 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91.  https://doi.org/10.1099/ijs.0.64483-0 CrossRefPubMedGoogle Scholar
  17. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075.  https://doi.org/10.1093/bioinformatics/btt086 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hehemann J–H, Boraston AB, Czjzek M (2014) A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol 28:77–86.  https://doi.org/10.1016/j.sbi.2014.07.009 CrossRefPubMedGoogle Scholar
  19. Hollants J, Leliaert F, De Clerck O, Willems A (2013) What we can learn from sushi: a review on seaweed–bacterial associations. FEMS Microbiol Ecol 83:1–16.  https://doi.org/10.1111/j.1574-6941.2012.01446.x CrossRefPubMedGoogle Scholar
  20. Horn SJ, Aasen IM, Østgaard K (2000a) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254.  https://doi.org/10.1038/sj.jim.7000065 CrossRefGoogle Scholar
  21. Horn SJ, Aasen IM, Østgaard K (2000b) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57.  https://doi.org/10.1038/sj.jim.2900771 CrossRefGoogle Scholar
  22. Ji S, Wang B, Lu M, Li F (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol Biofuels 9:81.  https://doi.org/10.1186/s13068-016-0494-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jung KA, Lim S, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190.  https://doi.org/10.1016/j.biortech.2012.10.025 CrossRefPubMedGoogle Scholar
  24. Kashima Y, Mori K, Fukada H, Ishikawa K (2005) Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose. Extremophiles 9:37–43.  https://doi.org/10.1007/s00792-004-0418-z CrossRefPubMedGoogle Scholar
  25. Kim N, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469.  https://doi.org/10.1016/j.biortech.2011.04.071 CrossRefPubMedGoogle Scholar
  26. Kobayashi J, Furukawa M, Ohshiro T, Suzuki H (2015) Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures. Appl Microbiol Biotechnol 99:5563–5572.  https://doi.org/10.1007/s00253-015-6522-4 CrossRefPubMedGoogle Scholar
  27. Konda NVSNM, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An investigation on the economic feasibility of macroalgae as a potential feedstock for biorefineries. Bioenerg Res 8:1046–1056.  https://doi.org/10.1007/s12155-015-9594-1 CrossRefGoogle Scholar
  28. Lee Y, Park M, Park G, Lee S, Lee SJ, Kim BS, Shin J, Lee D (2017) Complete genome sequence of the thermophilic bacterium Geobacillus subterraneus KCTC 3922T as a potential denitrifier. J Biotechnol 251:141–144.  https://doi.org/10.1016/j.jbiotec.2017.04.022 CrossRefPubMedGoogle Scholar
  29. Liao H, McKenzie T, Hageman R (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A 83:576–580.  https://doi.org/10.1073/pnas.83.3.576 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8.  https://doi.org/10.1016/j.ymben.2014.03.006 CrossRefPubMedGoogle Scholar
  31. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R, Fortina MG (2000) Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50:1331–1337.  https://doi.org/10.1099/00207713-50-3-1331
  32. Marchant R, Banat IM, Rahman TJ, Berzano M (2002) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602.  https://doi.org/10.1046/j.1462-2920.2002.00344.x CrossRefPubMedGoogle Scholar
  33. Marchant R, Franzetti A, Pavlostathis SG, Tas DO, Erdbrügger I, Űnyayar A, Mazmanci MA, Banat IM (2008) Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol 78:841–852.  https://doi.org/10.1007/s00253-008-1372-y CrossRefPubMedGoogle Scholar
  34. Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 98:2917–2935.  https://doi.org/10.1007/s00253-014-5557-2 CrossRefPubMedGoogle Scholar
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60.  https://doi.org/10.1186/1471-2105-14-60 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Motone K, Takagi T, Sasaki Y, Kuroda K, Ueda M (2016) Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. J Biotechnol 231:129–135.  https://doi.org/10.1016/j.jbiotec.2016.06.002 CrossRefPubMedGoogle Scholar
  37. Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141.  https://doi.org/10.1016/j.copbio.2015.02.006 CrossRefPubMedGoogle Scholar
  38. Petkauskaite R, Blom J, Goesmann A, Kuisiene N (2017) Draft genome sequence of pectic polysaccharide-degrading moderate thermophilic bacterium Geobacillus thermodenitrificans DSM 101594. Braz J Microbiol 48:7–8.  https://doi.org/10.1016/j.bjm.2016.06.013 CrossRefPubMedGoogle Scholar
  39. Rahman TJ, Marchant R, Banat IM (2004) Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem Soc Trans 32:209–213.  https://doi.org/10.1042/bst0320209 CrossRefPubMedGoogle Scholar
  40. Shulami S, Shenker O, Langut Y, Lavid N, Gat O, Zaide G, Zehavi A, Sonenshein AL, Shoham Y (2014) Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase. J Biol Chem 289:25957–25975.  https://doi.org/10.1074/jbc.M114.592873 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sun C, Chen Y, Zhang X, Pan J, Cheng H, Wu M (2014) Draft genome sequence of Microbulbzfer elongatus strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. Mar Genomics 18:83–85.  https://doi.org/10.1016/j.margen.2014.05.009 CrossRefPubMedGoogle Scholar
  42. Sun C, Fu G, Zhang C, Hu J, Xu L, Wang R, Su Y, Han S, Yu X, Cheng H, Zhang X, Huo Y, Xu X, Wu M (2016) Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 82:2975–2987.  https://doi.org/10.1128/aem.00204-16 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Suzuki H, Yoshida K (2012) Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids. J Microbiol Biotechnol 22:1279–1287.  https://doi.org/10.4014/jmb.1203.03023 CrossRefPubMedGoogle Scholar
  44. Suzuki H, Yoshida K, Ohshima T (2013) Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426. Appl Environ Microbiol 79:5151–5158.  https://doi.org/10.1128/AEM.01506-13 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405.  https://doi.org/10.1016/j.tibtech.2009.03.006 CrossRefPubMedGoogle Scholar
  46. Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60:45–52.  https://doi.org/10.1016/j.plasmid.2008.04.001 CrossRefPubMedGoogle Scholar
  47. Tominaga Y, Ohshiro T, Suzuki H (2016) Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species. Extremophiles 20:375–381.  https://doi.org/10.1007/s00792-016-0819-9 CrossRefPubMedGoogle Scholar
  48. Wakabayashi M, Sakatoku A, Noda F, Noda M, Tanaka D, Nakamura S (2012) Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles. Biodegradation 23:93–105.  https://doi.org/10.1007/s10532-011-9489-6 CrossRefPubMedGoogle Scholar
  49. Wang D, Kim DH, Kim KH (2016) Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 100:9439–9450.  https://doi.org/10.1007/s00253-016-7857-1 CrossRefPubMedGoogle Scholar
  50. Wang L, Tang Y, Wang S, Liu R, Liu M, Zhang Y, Liang F, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356.  https://doi.org/10.1007/s00792-006-0505-4 CrossRefPubMedGoogle Scholar
  51. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313.  https://doi.org/10.1126/science.1214547 CrossRefPubMedGoogle Scholar
  52. Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108CrossRefGoogle Scholar
  53. Wu LJ, Welker NE (1989) Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J Gen Microbiol 135:1315–1324.  https://doi.org/10.1099/00221287-135-5-1315 PubMedCrossRefGoogle Scholar
  54. Xia A, Jacob A, Herrmann C, Tabassum MR, Murphy JD (2015) Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol. Bioresour Technol 193:488–497.  https://doi.org/10.1016/j.biortech.2015.06.130 CrossRefPubMedGoogle Scholar
  55. Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235.  https://doi.org/10.4161/bioe.23396 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yao N, Ren Y, Wang W (2013) Genome sequence of a thermophilic bacillus, Geobacillus thermodenitrificans DSM465. Genome Announc 1:e01046–e01013.  https://doi.org/10.1128/genomeA.01046-13 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi I, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318.  https://doi.org/10.1016/j.biortech.2015.08.001 CrossRefPubMedGoogle Scholar
  58. Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160:1–11.  https://doi.org/10.1099/mic.0.071696-0 CrossRefPubMedGoogle Scholar
  59. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biotechnology, Graduate School of EngineeringTottori UniversityTottoriJapan
  2. 2.Department of Biotechnology, Faculty of EngineeringTottori UniversityTottoriJapan
  3. 3.Center for Research on Green Sustainable Chemistry, Faculty of EngineeringTottori UniversityTottoriJapan

Personalised recommendations