Applied Microbiology and Biotechnology

, Volume 102, Issue 11, pp 4717–4727 | Cite as

Biotransformation using halotolerant yeast in seawater: a sustainable strategy to produce R-(−)-phenylacetylcarbinol

  • Cecilia Andreu
  • Marcel ·lí del Olmo
Biotechnological products and process engineering


Acyloin condensation between benzaldehyde and decarboxylated pyruvate results in the production of R-(−)-phenylacetylcarbinol, a chiral precursor of the drug ephedrine. Huge research efforts have been made to improve the conditions of this reaction and to avoid the generation of by-products. Recently, we reported the advantages of using whole cells of the yeast Debaryomyces etchellsii as biocatalysts for this purpose. In this work, a new strategy, which fulfills green chemistry principles, is proposed and is based on using seawater as a gentle solvent. We demonstrate that, under these conditions, several improvements can be made compared to employing freshwater: (1) the conversion of the starting material in (R)-PAC is higher and with a minimum production of by-products; (2) it is possible to increase at least twofold the benzaldehyde load in the reaction medium; (3) cells can maintain their activity after several recycling rounds, which makes (R)-PAC production an easy and economical process.


Biocatalysis Debaryomyces Green chemistry Phenylacetylcarbinol Seawater 



This work was supported by the Universitat de València (UV-INV-AE15-323062). We gratefully acknowledge Dr. J. Ramos for providing us with the Debaryomyces hansenii strain CBS767 and the SCSIE (Universitat de València) for access to its instrumental facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies conducted with animals performed by any of the authors.

Supplementary material

253_2018_8945_MOESM1_ESM.pdf (430 kb)
ESM 1 (PDF 429 kb)


  1. Alsafadi D, Paradisi F (2013) Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 17:115–122. CrossRefPubMedGoogle Scholar
  2. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. CrossRefPubMedGoogle Scholar
  3. Anderson NG (2012) Solvent selection. In: Anderson NG (ed) Practical processes & development-a guide for organic chemists, 2nd edn. Academic Press, Oxford, pp 121–168CrossRefGoogle Scholar
  4. Andreu C, del Olmo M (2014) Potential of some yeast strains in the stereoselective synthesis of (R)-(−)-phenylacetylcarbinol and (S)-(+)-phenylacetylcarbinol and their reduced 1,2-dialcohol derivatives. Appl Microbiol Biotechnol 98:5901–5913. PubMedCrossRefGoogle Scholar
  5. Becvarova H, Hanc O (1963) Course of transformation of benzaldehyde by Saccharomyces cerevisiae. Folia Microbiol 8:165–169. CrossRefGoogle Scholar
  6. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline hábitats. FEMS Microbiol Lett 244:229–234. CrossRefPubMedGoogle Scholar
  7. Crout HG, Dalton H, Hutchinson DW, Miyagoshi M (1991) Studies of pyruvate decarboxylase: acyloin formation from aliphatic and heterocyclic aldehydes. J Chem Soc Perkin Trans 1:1329–1334. CrossRefGoogle Scholar
  8. Fesko K, Gruber-Khadjawi M (2013) Biocatalytic methods for CC bond formation. ChemCatChem 5:1248–1272. CrossRefGoogle Scholar
  9. Gomar-Alba M, Morcillo-Parra MA, Olmo M (2015) Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions. FEMS Yeast Res 15:fov039. CrossRefPubMedGoogle Scholar
  10. Gröger D, Schmander H-P, Mothes K (1966) Isolation of 1-​phenylacetylcarbinol. Z Allg Mikrobiol 6:275–287CrossRefGoogle Scholar
  11. Guo Z, Goswami A, Nanduri VB, Patel RN (2001) Asymmetric acyloin condensation catalysed by phenylpyruvate decarboxylase. Part 2: substrate specificity and purification of the enzyme. Tetrahedron Asymmetry 12:571–577. CrossRefGoogle Scholar
  12. Gupta KG, Singh J, Sahni G, Dhawan S (1979) Production of phenyl acetyl carbinol by yeasts. Biotechnol Bioeng 21:1085–1089. CrossRefGoogle Scholar
  13. Hernáiz MJ, Alcántara AR, García JI, Sinisterra JV (2010) Applied biotransformations in green solvents. Chem Eur J 16:9422–9437. CrossRefPubMedGoogle Scholar
  14. Hildebrandt G, Klavehn W (1932) Verfahren zur Herstellung von 1-1-Phenyl-2-methylamino-propan-1-ol. German Patent 548:459Google Scholar
  15. Hoyos P, Sinisterra JV, Molinari F, Alcántara AR, Domínguez de María P (2010) Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones. Acc Chem Res 43:288–299. CrossRefPubMedGoogle Scholar
  16. Iwan P, Goetz G, Schmitz S, Hauer B, Breuer M, Pohl M (2001) Studies on the continuous production of R-(−)-phenylacetylcarbinol in enzyme-membrane reactor. J Mol Catal B Enzym 11:387–396. CrossRefGoogle Scholar
  17. Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts-the basidiomycetes. Appl Microbiol Biotechnol 97:7563–7577. CrossRefPubMedGoogle Scholar
  18. Khan MA, Haq IW, Javed MM, Quadeer MA, Akhtar N, Bokhari SAI (2012) Studies on the production of L-phenylacetylcarbinol by Candida utilis in shake flask. Pak J Bot 44:361–364Google Scholar
  19. Kostraby MM, Smallridge AJ, Trewhella MA (2002) Yeast-mediated preparation of L-PAC in an organic media. Biotechnol Bioeng 77:827–831. CrossRefPubMedGoogle Scholar
  20. Křen V, Crout DHG, Dalton H, Hutchinson DW, König W, Turner MM, Dean G, Thomson N (1993) Pyruvate decarboxylase: a new enzyme for the production of acyloins by biotransformation. J Chem Soc Chem Commun 4:341–343CrossRefGoogle Scholar
  21. Kumar MR, Chari MA, Narasu ML (2006) Production of L-phenyl acetyl carbinol (L-PAC) by different novel strains of yeast in molasses and sugar cane juice as production medium. Res J Microbiol 1:433–437. CrossRefGoogle Scholar
  22. Kutty SN, Philip R (2013) Marine yeasts—a review. Yeast 25:465–483. CrossRefGoogle Scholar
  23. Lehmann C, Sibilla F, Maugeri Z, Streit WR, Domínguez de María P, Martínez R, Schwaneberg U (2012) Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chem 14:2719–2726. CrossRefGoogle Scholar
  24. Li H, Liu N, Huia X, Gao W-Y (2017) An improved enzymatic method for the preparation of (R)-phenylacetyl carbinol. RSC Adv 7:32664–32668. CrossRefGoogle Scholar
  25. Long A, James A, Ward OP (1989) Aromatic aldehydes as substrates for yeast and yeast alcohol dehydrogenase. Biotechnol Bioeng 33:657–660. CrossRefPubMedGoogle Scholar
  26. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. CrossRefPubMedGoogle Scholar
  27. Melamed D, Pnueli L, Arava Y (2008) Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 14:1337–1351. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miguez M, Nunes P, Azeredo N, Pedraza SF, Vasconcelos M, Viana O, Coelho MA, Amaral P (2012) Selection of yeasts for the production of L-phenyl-acetil-carbinol biotransformation in shake flasks. Chem Eng Transac 27:163–168. CrossRefGoogle Scholar
  29. Neuberg C, Hirsch J (1921) Über ein kohlenstoffketten knüpfendes ferment (carboligase). Biochem Z 115:282–310Google Scholar
  30. Neuberg C, Ohle H (1922) Zurkenntnis der carboligase. Biochem Z 127:327–337Google Scholar
  31. Ni Y, Holtmann D, Hollmann F (2014) How green is biocatalysis? To calculate is to know. ChemCatChem 6:930–943. CrossRefGoogle Scholar
  32. Nikolova P, Ward OP (1991) Preparation of L-Phenylacetylcarbinol by biotransformation: product and by-product formation and activities of the key enzymes in wilde type and ADH isoenzyme mutants of Saccharomyces cerevisiae. Biotechnol Bioeng 37:493–498. CrossRefGoogle Scholar
  33. Oliver AL, Roddick FA, Anderson BN (1997) Cleaner production of phenylacetylcarbinol by yeast through productivity improvements and waste minimisation. Pure Appl Chem 69:2371–2385. CrossRefGoogle Scholar
  34. Pohl M, Lingen B, Müller M (2002) Thiamin-diphosphate-dependent enzymes; new aspects on asymmetric C-C bond formation. Chem Eur J 8:5288–5295.<5288::AID-CHEM5288>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  35. Prista C, Michan C, Miranda IM, Ramos J (2016) The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 33:523–533. CrossRefPubMedGoogle Scholar
  36. Ren H, Zong M-H, Wu H, Li N (2016) Utilization of seawater for the biorefinery of lignocellulosic biomass: ionic liquid pretreatment, enzymatic hydrolysis, and microbial lipid production. ACS Sustain Chem Eng 4:5659–5666. CrossRefGoogle Scholar
  37. Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300. CrossRefPubMedGoogle Scholar
  38. Rosche B, Sandford V, Breuer M, Hauer B, Rogers PL (2002) Enhanced production of R-phenylacetylcarbinol ((R)-PAC) through enzymatic biotransformation. J Mol Catal B Enzym 19:109–115. CrossRefGoogle Scholar
  39. Seebach D, Corey EJ (1975) Generation and synthetic applications of 2-lithio-1,3-dithianes. J Org Chem 40:231–237. CrossRefGoogle Scholar
  40. Sehl T, Hailes HC, Ward JM, Wardenga R, von Lieres E, Offermann H, Westphal R, Pohl M, Rother D (2013) Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. Angew Chem Int Ed Engl 52:6772–6775. CrossRefPubMedGoogle Scholar
  41. Serra I, Guidi B, Burgaud G, Contente ML, Ferraboschi P, Pinto A, Compagno C, Molinari F, Romano D (2016) Seawater-based biocatalytic strategy: stereoselective reductions of ketones with marine yeasts. ChemCatChem 8:3254–3260. CrossRefGoogle Scholar
  42. Shukla VB, Kulkarni PR (2000) L-phenylacetilcarbinol (L-PAC): biosynthesis and industrial applications. World J Microbiol Biotechnol 16:499–506CrossRefGoogle Scholar
  43. Sprenger GA, Pohl M (1999) Synthetic potential of thiamine diphosphate-dependent enzymes. J Mol Catal B Enzym 6:145–159. CrossRefGoogle Scholar
  44. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal 3:2823–2836. CrossRefGoogle Scholar
  45. Takeshita M, Sato T (1989) Synthesis of optically active 1-phenyl-1,2-propanediol by use of baker’s yeast. Chem Pharm Bull 37:1085–1086. CrossRefGoogle Scholar
  46. Trincone A (2010) Potential biocatalysts originating from sea environments. J Mol Catal B Enzym 66:241–256. CrossRefGoogle Scholar
  47. Tripathi CKM, Basu SK, Vora VC, Mason JR, Pirt SJ (1988) Continuous cultivation of a yeast strain for biotransformation of L-​acetyl phenyl carbinol (L-​PAC) from benzaldehyde. Biotechnol Lett 9:635–636. CrossRefGoogle Scholar
  48. Wang J, Lu W (2011) Chiral drugs via biocatalytic approaches. In: Lin G-Q, You Q-D, Cheng J-F (eds) Chiral drugs: chemistry and biological action. John Wiley & Sons, Inc, Hobpken, New Jersey Chapter 3Google Scholar
  49. Wells A, Meyer H-P (2014) Biocatalysis as a strategic green technology for the chemical industry. ChemCatChem 6:918–920. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de Química Orgànica, Facultat de FarmàciaUniversitat de València (UVEG)BurjassotSpain
  2. 2.Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaUniversitat de València (UVEG)BurjassotSpain

Personalised recommendations