Genetic diversity analysis of Leuconostoc mesenteroides from Korean vegetables and food products by multilocus sequence typing

  • Anshul Sharma
  • Jasmine Kaur
  • Sulhee Lee
  • Young-Seo Park
Applied genetics and molecular biotechnology
  • 30 Downloads

Abstract

In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.

Keywords

Leuconostoc mesenteroides MLST PCR Splits tree Sequence type 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alegría Á, Delgado S, Flórez AB, Mayo B (2013) Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci Technol 93:657–673CrossRefGoogle Scholar
  2. Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright AV, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects. Marcel Dekker, New York, pp 1–66Google Scholar
  3. Bain JM, Tavanti A, Davidson AD, Jacobsen MD, Shaw D, Gow NAR, Odds FC (2007) Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clinic Microbiol 45(5):1469–1477CrossRefGoogle Scholar
  4. Bilhere E, Lucas PM, Claisse O, Lonvaud-Funel A (2009) Multilocus sequence typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic recombination. Appl Environ Microbiol 75:1291–1300CrossRefPubMedGoogle Scholar
  5. Björkroth KJ, Geisen R, Schillinger U, Weiss N, De Vos P, Holzapfel WH, Korkeala HJ, Vandamme P (2000) Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl Environ Microbiol 66(9):3764–3772CrossRefPubMedPubMedCentralGoogle Scholar
  6. Botina SG, Tsygankov YD, Sukhodolets VV (2006) Identification of industrial strains of lactic acid bacteria by methods of molecular genetic typing. Russ J Genet 42(12):1367–1379CrossRefGoogle Scholar
  7. de Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I, Vancanneyt M, Vuyst LD, Franz MAPC, Vandamme P (2007) Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57:2952–2959CrossRefPubMedGoogle Scholar
  8. Cai H, Rodriguez BT, Zhang W, Broadbent JR, Steele JL (2007) Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology 153:2655–2665CrossRefPubMedGoogle Scholar
  9. Calmin G, Lefort F, Belbahri L (2008) Multi-loci sequence typing for two lacto-acid bacteria (LAB) species: Pediococcus paryulus and P. damnosus. Mol Biotechnol 40:170–179CrossRefPubMedGoogle Scholar
  10. Chaillou S, Lucquin I, Najjari A, Zagorec M, Champomier-Vergès MC (2013) Population genetics of Lactobacillus sakei reveals three lineages with distinct evolutionary histories. PLoS One 8(9):e73253CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cibik R, Lepage E, Talliez P (2000) Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification. Syst Appl Microbiol 23(2):267–278CrossRefPubMedGoogle Scholar
  12. Dan T, Liu W, Sun Z, Lv Q, Xu H, Song Y, Zhang H (2014) A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia. BMC Microbiol 14:150CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dan T, Liu W, Song Y, Xu H, Menghe B, Zhang H, Sun Z (2015) The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST). BMC Microbiol 15:107CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dingle KE, Colles FM, Wareing DRA, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJL, Urwin R, Maiden MCJ (2001) Multilocus sequence typing system for Campylobacter jejuni. J Clinic Microbiol 39:14–23CrossRefGoogle Scholar
  15. Farfán M, Miñana-Galbis D, Fusté MC, Lorén JG (2002) Allelic diversity and population structure in Vibrio cholera O139 Bengal based on nucleotide sequence analysis. J Bacteriol 184:1304–1313CrossRefPubMedPubMedCentralGoogle Scholar
  16. Feil EJ, Enright MC (2004) Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol 7(3):308–313CrossRefPubMedGoogle Scholar
  17. Gemechu T (2015) Review on lactic acid bacteria function in milk fermentation and preservation. Afr J Food Sci 9(4):170–175CrossRefGoogle Scholar
  18. Glaeser P, Kämpfer P (2014) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245CrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Hayek SA, Ibrahim SA (2013) Current limitations and challenges with lactic acid bacteria: a review. Food Nutr Sci 4:73–87CrossRefGoogle Scholar
  21. Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolsto AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hemme D, Foucaud-Scheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14:467–494CrossRefGoogle Scholar
  23. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Bio Evol 23(2): 254–267Google Scholar
  24. Jeong SJ, Park JY, Lee HJ, Kim JH (2007) Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2. Plasmid 57(3):314–323CrossRefPubMedGoogle Scholar
  25. Jolley KA, Feil EJ, Chan MS, Maiden MC (2001) Sequence type analysis and recombinational tests (START). Bioinformatics 17(12):1230–1231CrossRefPubMedGoogle Scholar
  26. Kaur J, Lee S, Park Y-S, Sharma A (2017) RAPD analysis of Leuconostoc mesenteroides strains associated with vegetables and food products from Korea. LWT - Food Sci Technol 77:383–388CrossRefGoogle Scholar
  27. Konstantinidis KT, Ramette A, Tiedje JM (2006) Towards a more robust assessment of intra-species diversity using fewer genetic markers. Appl Environ Microbiol 72:7286–7293CrossRefPubMedPubMedCentralGoogle Scholar
  28. Korber B (2000) HIV signature and sequence variation analysis. In: Rodrigo AG, Learn GH (eds) Computational analysis of HIV molecular sequences. Kluwer Academic Publishers, Dordrecht, pp 55–72Google Scholar
  29. Kot W, Neve H, Heller KJ, Vogensen FK (2014) Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Front Microbiol 5:186CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kryazhimskiy S, Plotkin JB (2008) The population genetics of d N/d S. PLoS Genet 4:e1000304CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kunene NF, Geornaras I, Von Holy A, Hastings JW (2000) Characterization and determination of origin of lactic acid bacteria from a sorghum-based fermented weaning food by analysis of soluble proteins and amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol 66(3):1084–1092CrossRefPubMedPubMedCentralGoogle Scholar
  32. de Las Rivas B, Marcobal A, Munoz R (2006) Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology 152:85–93CrossRefPubMedGoogle Scholar
  33. Lee HM, Lee Y (2008) A differential medium for lactic acid-producing bacteria in a mixed culture. Lett Appl Microbiol 46(6):676–681CrossRefPubMedGoogle Scholar
  34. Librado P, Rozas J (2009) DnaSPv5: a software for comprehensive analysis of DNA polymorphisms data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  35. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meslier V, Loux V, Renault P (2012) Genome sequence of Leuconostoc pseudomesenteroides strain 4882, isolated from a diary starter culture. J Bacteriol 194:696–712Google Scholar
  37. Nieto-Arribas P, Sesena S, Poveda JM, Palop L, Cabezas L (2010) Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol 27:85–93CrossRefPubMedGoogle Scholar
  38. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J (2010) Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4(3):377–387CrossRefPubMedGoogle Scholar
  39. Passerini D, Beltramo C, Coddeville M, Quentin Y, Ritzenthaler P, Daveran-Mingot M-L, Bourgeois PL (2010) Genes but not genomes reveal bacterial domestication of Lactococcus Lactis. PLoS One 5(12):e15306CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pérez G, Cardell E, Zárate V (2002) Random amplified polymorphic DNA analysis for differentiation of Leuconostoc mesenteroides subspecies isolated from Tenerife cheese. Lett Appl Microbiol 34:82–85CrossRefPubMedGoogle Scholar
  41. Picozzi C, Bonacina G, Vigentini I, Foschino R (2010) Genetic diversity in Italian Lactobacillus sanfranciscensis strains assessed by multilocus sequence typing and pulsed-field gel electrophoresis analyses. Microbiology 156:2035–2045CrossRefPubMedGoogle Scholar
  42. Rahman A, Cailliez-Grimal C, Bontemps C, Payot S, Chaillou S, Revol-Junelles A-M, Borgesa F (2014) High genetic diversity among strains of the unindustrialized lactic acid bacterium Carnobacterium maltaromaticum in dairy products as revealed by multilocus sequence typing. Appl Environ Microbiol 80(13):3920–3929CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sabat AG, Budimir AJ, Nashev D, Sá-Leão R, van Dijl J, Laurent F, Grundmann H, Friedrich AW (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18(4):20380CrossRefPubMedGoogle Scholar
  44. Sánchez JI, Martínez B, Rodríguez A (2005) Rational selection of Leuconostoc strains for mixed starters based on the physiological biodiversity found in raw milk fermentations. Int J Food Microbiol 105:377–387CrossRefPubMedGoogle Scholar
  45. Song Y, Sun Z, Guo C, Wu Y, Liu W, Yu J, Menghe B, Yang R, Zhang H (2016) Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Sci Reports 6:22704CrossRefGoogle Scholar
  46. Steele J, Broadbent J, Kok J (2013) Perspective on the contribution of lactic acid bacteria to cheese flavor development. Curr Opin Biotechnol 24(2):135–141CrossRefPubMedGoogle Scholar
  47. Tanganurat W, Quinquis B, Leelawatcharamas V, Bolotin A (2009) Genotypic and phenotypic characterization of Lactobacillus plantarum strains isolated from Thai fermented fruits and vegetables. J Basic Microbiol 49:377–385CrossRefPubMedGoogle Scholar
  48. Tanigawa K, Watanabe K (2011) Multilocus sequence typing reveals a novel sub speciation of Lactobacillus delbrueckii. Microbiology 157:727–738CrossRefPubMedGoogle Scholar
  49. Unemo M, Dillon J-AR (2011) Review and international recommendation of methods for typing Neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment and biology. Clinic Microbiol Rev 24(3):447–458CrossRefGoogle Scholar
  50. Urwin R, Maiden MC (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11(10):479–487CrossRefPubMedGoogle Scholar
  51. Vihavainen EJ, Björkroth KJ (2009) Diversity of Leuconostoc gasicomitatum associated with meat spoilage. Int J Food Microbiol 136(1):32–36CrossRefPubMedGoogle Scholar
  52. Wassie M, Wassie T (2016) Isolation and identification of lactic acid bacteria from raw cow milk. Int J Adv Res Biol Sci 3(8):44–49Google Scholar
  53. Weng PL, Ramli R, Shamsudin MN, Cheah YK, Hamat RA (2013) High genetic diversity of Enterococcus faecium and Enterococcus faecalis clinical isolates by pulsed-field gel electrophoresis and multilocus sequence typing from a hospital in Malaysia. Biomed Res Int 2013:1–6CrossRefGoogle Scholar
  54. Zhang ZG, Ye ZQ, Yu L, Shi P (2011) Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 11(1):1–12CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang W, Liu W, Song Y, Xu H, Menghe B, Zhang H, Sun Z (2015) Multilocus sequence typing of a dairy-associated Leuconostoc mesenteroides population reveals clonal structure with intragenic homologous recombination. J Dairy Sci 98:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Science and BiotechnologyGachon UniversitySeongnamSouth Korea

Personalised recommendations