Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 10, pp 4549–4561 | Cite as

Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108

  • Toshiharu Yakushi
  • Seiya Fukunari
  • Tomohiro Kodama
  • Minenosuke Matsutani
  • Shun Nina
  • Naoya Kataoka
  • Gunjana Theeragool
  • Kazunobu Matsushita
Applied microbial and cell physiology

Abstract

Acetic acid fermentation is widely considered a consequence of ethanol oxidation by two membrane-bound enzymes—alcohol dehydrogenase and aldehyde dehydrogenase (ALDH)—of acetic acid bacteria. Here, we used a markerless gene disruption method to construct a mutant of the Acetobacter pasteurianus strain SKU1108 with a deletion in the aldH gene, which encodes the large catalytic subunit of a heterotrimeric ALDH complex (AldFGH), to examine the role of AldFGH in acetic acid fermentation. The ΔaldH strain grew less on ethanol-containing medium, i.e., acetic acid fermentation conditions, than the wild-type strain and significantly accumulated acetaldehyde in the culture medium. Unexpectedly, acetaldehyde oxidase activity levels of the intact ΔaldH cells and the ΔaldH cell membranes were similar to those of the wild-type strain, which might be attributed to an additional ALDH isozyme (AldSLC). The apparent KM values of the wild-type and ΔaldH membranes for acetaldehyde were similar to each other, when the cells were cultured in nonfermentation conditions, where ΔaldH cells grow as well as the wild-type cells. However, the membranes of the wild-type cells grown under fermentation conditions showed a 10-fold lower apparent KM value than those of the cells grown under nonfermentation conditions. Under fermentation conditions, transcriptional levels of a gene for AldSLC were 10-fold lower than those under nonfermentation conditions, whereas aldH transcript levels were not dramatically changed under the two conditions. We suggest that A. pasteurianus SKU1108 has two ALDHs, and the AldFGH complex is indispensable for acetic acid fermentation and is the major enzyme under fermentation conditions.

Keywords

Acetic acid fermentation Acetaldehyde Membrane-bound aldehyde dehydrogenase Acetobacter pasteurianus Molybdenum molybdopterin 

Notes

Acknowledgments

We would like to thank Luis Ielpi (Universidad de Buenos Aires, Argentina) for kindly providing pK18mobGII and Megumi Ichiki (Yamaguchi University) for her technical assistance. We are grateful to Osao Adachi (Yamaguchi University) and Hirohide Toyama (University of Ryukyus) who encouraged us throughout this study.

Funding

This study was funded by MEXT KAKENHI (grant number 23580115). Part of this work was funded by the Core to Core Program, which was supported by the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8940_MOESM1_ESM.pdf (201 kb)
ESM 1 (PDF 200 kb)

References

  1. Adachi O, Shinagawa E, Matsushita K, Ameyama M (1988) Preparation of cells and cytoplasmic membranes of acetic acid bacteria which exclusively contain quinoprotein aldehyde dehydrogenase. Agric Biol Chem 52:2083–2084.  https://doi.org/10.1271/bbb1961.52.2083 CrossRefGoogle Scholar
  2. Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1980) Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 44:503–515.  https://doi.org/10.1080/00021369.1980.10863997 CrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andres-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Perez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193:2670–2671CrossRefPubMedPubMedCentralGoogle Scholar
  5. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783.  https://doi.org/10.1093/nar/gkp612 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472CrossRefPubMedGoogle Scholar
  7. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  8. Dulley JR, Grieve PA (1975) A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64:136–141CrossRefPubMedGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  10. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y, Beppu T (1989) Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol 55:171–176PubMedPubMedCentralGoogle Scholar
  12. Giongo A, Tyler HL, Zipperer UN, Triplett EW (2010) Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission. Stand Genomic Sci 2:309–317.  https://doi.org/10.4056/sigs.972221 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gomez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguin-Espinosa R, Perez de la Mora M, Membrillo-Hernandez J, Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192:5718–5724CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gomez-Manzo S, Contreras-Zentella M, Gonzalez-Valdez A, Sosa-Torres M, Arreguin-Espinoza R, Escamilla-Marvan E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125:71–78CrossRefPubMedGoogle Scholar
  15. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  16. Hattori H, Yakushi T, Matsutani M, Moonmangmee D, Toyama H, Adachi O, Matsushita K (2012) High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl Microbiol Biotechnol 95:1531–1540CrossRefPubMedGoogle Scholar
  17. Kanchanarach W, Theeragool G, Yakushi T, Toyama H, Adachi O, Matsushita K (2010) Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol 85:741–751CrossRefPubMedGoogle Scholar
  18. Katzen F, Becker A, Ielmini MV, Oddo CG, Ielpi L (1999) New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3′ end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol 65:278–282PubMedPubMedCentralGoogle Scholar
  19. Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K (2013) Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 79:1654–1660CrossRefPubMedPubMedCentralGoogle Scholar
  20. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–IN1.  https://doi.org/10.1016/S0022-2836(61)80047-8 CrossRefGoogle Scholar
  21. Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075CrossRefPubMedGoogle Scholar
  22. Masud U, Matsushita K, Theeragool G (2010) Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108. Int J Food Microbiol 138:39–49CrossRefPubMedGoogle Scholar
  23. Matsushita K, Takaki Y, Shinagawa E, Ameyama M, Adachi O (1992) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci Biotechnol Biochem 56:304–310.  https://doi.org/10.1271/bbb.56.304 CrossRefGoogle Scholar
  24. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 36. Academic, London, pp 247–301Google Scholar
  25. Matsushita K, Yakushi T, Toyama H, Shinagawa E, Adachi O (1996) Function of multiple heme c moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J Biol Chem 271:4850–4857CrossRefPubMedGoogle Scholar
  26. Matsutani M, Hirakawa H, Hiraoka E, Theeragool G, Yakushi T, Matsushita K (2016) Complete genome sequencing and comparative genomic analysis of the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, provide a new insight into thermotolerance. Microbes Environ 31:395–400CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matsutani M, Kawajiri E, Yakushi T, Adachi O, Matsushita K (2013a) Draft genome sequence of dihydroxyacetone-producing Gluconobacter thailandicus strain NBRC 3255. Genome Announc 1:e0011813PubMedCrossRefGoogle Scholar
  28. Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, Yakushi T, Matsushita K (2013b) Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol 165:109–119CrossRefPubMedGoogle Scholar
  29. Nakano S, Ebisuya H (2016) Physiology of Acetobacter and Komagataeibacter spp.: acetic acid resistance mechanism in acetic acid fermentation. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 223–234Google Scholar
  30. Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193:6997–6998CrossRefPubMedPubMedCentralGoogle Scholar
  31. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200CrossRefPubMedGoogle Scholar
  32. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782CrossRefPubMedGoogle Scholar
  33. Saeki A, Matsushita K, Takeno S, Taniguchi M, Toyama H, Theeragool G, Lotong N, Adachi O (1999) Enzymes responsible for acetate oxidation by acetic acid bacteria. Biosci Biotechnol Biochem 63:2102–2109.  https://doi.org/10.1271/bbb.63.2102 CrossRefPubMedGoogle Scholar
  34. Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O (1997) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 61:138–145.  https://doi.org/10.1271/bbb.61.138 CrossRefGoogle Scholar
  35. San George RC, Hoberman HD (1986) Reaction of acetaldehyde with hemoglobin. J Biol Chem 261:6811–6821PubMedGoogle Scholar
  36. Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392.  https://doi.org/10.1016/S0723-2020(11)80212-2 CrossRefGoogle Scholar
  37. Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, Yamada M, Matsushita K (2011) Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci Biotechnol Biochem 75:1921–1928CrossRefPubMedGoogle Scholar
  38. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  39. Stevens VJ, Fantl WJ, Newman CB, Sims RV, Cerami A, Peterson CM (1981) Acetaldehyde adducts with hemoglobin. J Clin Invest 67:361–369CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tamaki T, Horinouchi S, Fukaya M, Okumura H, Kawamura Y, Beppu T (1989) Nucleotide sequence of the membrane-bound aldehyde dehydrogenase gene from Acetobacter polyoxogenes. J Biochem 106:541–544CrossRefPubMedGoogle Scholar
  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tayama K, Fukaya M, Okumura H, Kawamura Y, Beppu T (1989) Purification and characterization of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes sp. nov. Appl Microbiol Biotechnol 32:181–185.  https://doi.org/10.1007/BF00165885 CrossRefGoogle Scholar
  43. Thurner C, Vela C, Thony-Meyer L, Meile L, Teuber M (1997) Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch Microbiol 168:81–91CrossRefPubMedGoogle Scholar
  44. Trcek J, Mira NP, Jarboe LR (2015) Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol 99:6215–6229CrossRefPubMedGoogle Scholar
  45. Wang M, McIntee EJ, Cheng G, Shi Y, Villalta PW, Hecht SS (2000) Identification of DNA adducts of acetaldehyde. Chem Res Toxicol 13:1149–1157.  https://doi.org/10.1021/tx000118t CrossRefPubMedGoogle Scholar
  46. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42:D581–D591CrossRefPubMedGoogle Scholar
  47. Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchiJapan
  2. 2.Department of Biological Chemistry, Faculty of AgricultureYamaguchi UniversityYamaguchiJapan
  3. 3.Research Center for Thermotolerant Microbial ResourcesYamaguchi UniversityYamaguchiJapan
  4. 4.Department of Microbiology, Faculty of ScienceKasetsart UniversityBangkokThailand

Personalised recommendations