Ficellomycin: an aziridine alkaloid antibiotic with potential therapeutic capacity

  • Xihong He
  • Meng Li
  • Shuting Song
  • Xiaonong Wu
  • Jing Zhang
  • Guoguo Wu
  • Rong Yue
  • Huanhuan Cui
  • Siqing Song
  • Congcong Ma
  • Fuping Lu
  • Huitu Zhang
Mini-Review

Abstract

Ficellomycin is an aziridine antibiotic produced by Streptomyces ficellus, which displays high in vitro activity against Gram-positive bacteria including multidrug resistant strains of Staphylococcus aureus. Compared to currently available antibiotics, ficellomycin exhibits a unique mechanism of action—it impairs the semiconservative DNA replication by inducing the formation of deficient 34S DNA fragments, which lack the ability to integrate into larger DNA pieces and eventually the complete bacterial chromosome. Until recently, some important progress has been made in research on ficellomycin synthesis and biosynthesis, opening the perspective to develop a new generation of antibiotics with better clinical performance than the currently used ones. In this review, we will cover the discovery and biological activity of ficellomycin, its biosynthesis, mode of action, and related synthetic analogs. The role of ficellomycin and its analogs as an important source of drug prototypes will be discussed together with future research prospects.

Keywords

Ficellomycin Antibiotics Aziridine Streptomyces ficellus MRSA 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Argoudelis AD, Reusser F, Whaley HA, Baczynskyj L, Mizsak SA, Wnuk RJ (1976) Antibiotics produced by Streptomyces ficellus. I. Ficellomycin. J Antibiot 29(10):1001–1006CrossRefPubMedGoogle Scholar
  2. Ashburn T, Thor K (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683CrossRefPubMedGoogle Scholar
  3. Bicker U, Fischer W (1974) Enzymatic aziridine synthesis from beta amino-alcohols—a new example of endogenous carcinogen formation. Nature 455:344–345CrossRefGoogle Scholar
  4. Brandt A, Gardner M (2003) Companion to medicine in the twentieth century. Routledge, AbingdonGoogle Scholar
  5. Brulikova L, Hlavac J, Hradil P (2012) DNA interstrand cross-linking agents and their chemotherapeutic potential. Curr Med Chem 19(3):364–385CrossRefPubMedGoogle Scholar
  6. Bush K (2010) The coming age of antibiotics: discovery and therapeutic value. Ann. N.Y. Acad Sci 1213:1–4CrossRefPubMedGoogle Scholar
  7. Chen G, He Z, Yu A (2014) Synthesis of functionalized 1-azabicyclo[3.1.0]hexanes: studies towards ficellomycin and its analogs. Hetercycles 88:1299–1309CrossRefGoogle Scholar
  8. Drusano G, Hope W, MacGowan A, Louie A (2015) Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 2. Antimicrob Agents Chemother 60(3):1194–1201CrossRefPubMedGoogle Scholar
  9. Foulke-Abel J, Agbo H, Zhang H, Mori S, Watanabe CM (2011) Mode of action and biosynthesis of the azabicycle-containing natural products azinomycin and ficellomycin. Nat Prod Rep 4:693–704CrossRefGoogle Scholar
  10. Frances M, William E, Charlesnika T, Michael Y, William A, Mai T, Susan C, Kathleen M, Stuart J, Monica K, Lance R, Anthony E, Dale N (2017) The impact of recurrent clostridium difficile infection on patients’ prevention behaviors. Infect Control Hosp Epidemiol 38:1351–1357.  https://doi.org/10.1017/ice.2017.208 CrossRefGoogle Scholar
  11. Gracia M (2007) Torwards the total synthesis of ficellomycin. dissertation, University of Warwick. UKGoogle Scholar
  12. Haaber J, Penadés J, Ingmer H (2017) Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 25(11):893–905CrossRefPubMedGoogle Scholar
  13. Imae K, Kamachi H, Yamashita H, Okita T, Okuyama S, Tsuno T, Yamasaki T, Sawada Y, Ohbayashi M, Naito T, Oki T (1991) Synthesis, stereochemistry, and biological properties of the depigmenting agents, melanostatin, feldamycin and analogs. J Antibiot 44(1):76–85CrossRefPubMedGoogle Scholar
  14. Ismail F, Levitsky D, Dembitsky V (2009) Aziridine alkaloids as potential therapeutic agents. Eur J Med Chem 44(9):3373–3387CrossRefPubMedGoogle Scholar
  15. Ishida N, Kumagai K, Niida T, Hamamoto K, Shomura T (1967) Nojirimycin, a new antibiotic. I. Taxonomy and fermentation. J Antibiot 20(2):62–65PubMedGoogle Scholar
  16. Ittah Y, Sasson Y, Shahak I, Tsaroom S, Blum J (1978) A new Aziridine synthesis from 2-azido alcohols and tertiary phosphines. Preparation of Phenanthrene 9, 10-imine. J Org Chem 43(22):4271–4273CrossRefGoogle Scholar
  17. Koehn F (2008) New strategies and methods in the discovery of natural product anti-infective agents: the mannopeptimycins. J Med Chem 51(9):2613–2617CrossRefPubMedGoogle Scholar
  18. Kuo M, Yurek D, Mizsak S (1989) Structure elucidation of ficellomycin. J Antibiot 42(3):357–360CrossRefPubMedGoogle Scholar
  19. Leclercq R, Courvalin P (1991) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35(7):1267–1272CrossRefPubMedCentralPubMedGoogle Scholar
  20. Liu C, Kelly GT, Watanabe CM (2006) In vitro biosynthesis of the antitumor agent azinomycin B. Org Lett 8(6):1065–1068CrossRefPubMedGoogle Scholar
  21. Liu Y, Li M, Mu H, Song S, Zhang Y, Chen K, He X, Wang H, Dai Y, Lu F, Yan Z, Zhang H (2017) Identification and characterization of the ficellomycin biosynthesis gene cluster from Streptomyces ficellus. Appl Microbiol Biotechnol 101(20):7589–7602CrossRefPubMedGoogle Scholar
  22. Matamoros S, Gras-Leguen C, Vacon F, Potel G, Cochetiere M (2013) Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 21(4):167–173CrossRefPubMedGoogle Scholar
  23. Maxson T, Mitchell D (2016) Targeted treatment for bacterial infections: prospects for pathogen-specific antibiotics coupled with rapid diagnostics. Tetrahedron 72(25):3609–3624CrossRefPubMedGoogle Scholar
  24. McMechen M. (2016) Synthesis of the Azabicyclo[3.1.0]hexane Ring Core of Ficellomycin. Proceedings of the national conference on undergraduate research (NCUR). Doi: http://ncurproceedings.org/ojs/index.php/NCUR2016/article/view/1671
  25. Moran G, Drishnadasan A, Gorwitz R, Fosheim G, McDougal L, Roberta B, Talan D (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674CrossRefPubMedGoogle Scholar
  26. Nepal KK, Lee RP, Rezenom YH, Watanabe CM (2015) Probing the role of N-acetyl-glutamyl 5-phosphate, an acyl phosphate, in the construction of the azabicycle moiety of the azinomycins. Biochemistry 54(29):4415–4418CrossRefPubMedGoogle Scholar
  27. Ohnuki T, Imanaka T, Aiba S (1985) Isolation of streptomycin-nonproducing mutants deficient in biosynthesis of the streptidine moiety or linkage between streptidine 6-phosphate and dihydrostreptose. Antimicrob Agents Chemother 27(3):367–374CrossRefPubMedCentralPubMedGoogle Scholar
  28. Paumier D, Garcia M, Shipman M, Muir J (2004) Rapid assembly of the 1-Azabicyclo[3.1.0]hexane skeleton of ficellomycin. Synlett (12):2212–2214Google Scholar
  29. Penesyan A, Gillings M, Paulsen I (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20(4):5286–5298CrossRefPubMedGoogle Scholar
  30. Pendleton A, Kocher M (2015) Methicillin-resistant staphylococcus aureus bone and joint infections in children. J Am Acad Orthop Surg 23(1):29–37CrossRefPubMedGoogle Scholar
  31. Reusser F (1977) Ficellomycin and feldamycin; inhibitors of bacterial semiconservative DNA replication. Biochemistry 16(15):3406–3412CrossRefPubMedGoogle Scholar
  32. Berlinck RG, Bertonha AF, Takaki M, Rodriguez JPG (2017) The chemistry and biology of guanidine natural products. Nat Prod Rep 34(11):1247–1334CrossRefGoogle Scholar
  33. Sears P, Ichikawa Y, Ruiz N, Gorbach S (2013) Advances in the treatment of Clostridium difficile with fidaxomicin: a narrow spectrum antibiotic. Ann N Y Acad Sci 1291:33–41CrossRefPubMedGoogle Scholar
  34. Schito G (2006) The importance of the development of antibiotic resistance in Staphylococcus aureus. Clin Microbio Infect 12:3–8CrossRefGoogle Scholar
  35. Thibodeaux C, Chang W, Liu H (2012) Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev 112(3):1681–1709CrossRefPubMedGoogle Scholar
  36. Walsh C, Wencewicz T (2014) Prospects for new antibiotics: a molecule-centered perspective. J Antibiot 67(1):7–22CrossRefPubMedGoogle Scholar
  37. Wise E, Park J (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in the cell wall mucopeptide synthesis. Nat Acad of Sci 54:75–81CrossRefGoogle Scholar
  38. Zhao Q, He Q, Ding W, Tang M, Kang Q, Yu Y, Deng W, Zhang Q, Fang J, Tang G, Liu W (2008) Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem Biol 15(7):693–705CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xihong He
    • 1
  • Meng Li
    • 1
  • Shuting Song
    • 1
  • Xiaonong Wu
    • 1
  • Jing Zhang
    • 1
  • Guoguo Wu
    • 1
  • Rong Yue
    • 1
  • Huanhuan Cui
    • 1
  • Siqing Song
    • 1
  • Congcong Ma
    • 1
  • Fuping Lu
    • 1
  • Huitu Zhang
    • 1
    • 2
  1. 1.Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of BioengineeringTianjin University of Science & TechnologyTianjinPeople’s Republic of China
  2. 2.Industrial Microbiology Laboratory, College of Biotechnology, Tianjin Economic and Technological Development ZoneTianjin University of Science & TechnologyTianjinPeople’s Republic of China

Personalised recommendations