Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles

Abstract

Phytochemicals offer immense promise for sustainable development and production of nanotechnology-enabled products. In the present study, Olax nana Wall. ex Benth. (family: Olacaceae) aqueous extract was used as an effective stabilizing agent to produce biogenic silver (ON-AgNPs) and gold nanoparticles (ON-AuNPs), which were investigated for biocompatibility and prospective biomedical applications (antibacterial, anticancer, antileishmanial, enzyme inhibition, antinociceptive, and anti-inflammatory activities). Various characterization techniques (XRD, FTIR, SEM, TEM, DLS, EDX, and SAED) revealed efficient biosynthesis of ON-AgNPs (26 nm) and ON-AuNPs (47 nm). In the toxicological assessment, ON-AgNPs and ON-AuNPs were found biocompatible towards human RBCs and macrophages (IC50 > 200 μg/mL). In a concentration range of 62.5–2000 μg/mL, a strong antibacterial effect was produced by ON-AgNPs against Staphylococcus epidermidis (MIC = 7.14 μg/mL) and Escherichia coli (8.25 μg/mL), while ON-AuNPs was only active against Staphylococcus aureus (9.14 μg/mL). At a concentration of 3.9–500 μg/mL, a dose-dependant inhibition of HepG2 cancer cells was produced by ON-AgNPs (IC50 = 14.93 μg/mL) and ON-AuNPs (2.97 μg/mL). Both ON-AgNPs and ON-AuNPs were found active against Leishmania tropica (KMH23) promastigotes (IC50 = 12.56 and 21.52 μg/mL) and amastigotes (17.44 and 42.20 μg/mL), respectively, after exposure to a concentration range of 1–200 μg/mL for 72 h. Preferential enzyme inhibition against urease and carbonic anhydrase II were noted for ON-AgNPs (39.23 and 8.89%) and ON-AuNPs (31.34 and 6.34%), respectively; however, these were found inactive against xanthine oxidase at 0.2 mg/mL. In the in vivo antinociceptive (acetic acid-induced abdominal constrictions) and anti-inflammatory (carrageenan-induced paw edema) activities, ON-AgNPs and ON-AuNPs at doses of 40 and 80 mg/kg, significantly attenuated the tonic nociception (P < 0.001) and ameliorated the carrageenan-induced inflammation (P < 0.01, P < 0.001). The results of in vitro and in vivo activities indicated that the biogenic nanoparticles can be used as valuable theranostic agents for further exploration of diverse biomedical applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahamed M, Khan MM, Siddiqui M, AlSalhi MS, Alrokayan SA (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica E: Low Dimens Syst Nanostruct 43(6):1266–1271

    Article  CAS  Google Scholar 

  2. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Adv Res 7(1):17–28

    Article  CAS  Google Scholar 

  3. Ahmmad B, Leonard K, Islam MS, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013) Green synthesis of mesoporous hematite (α-Fe 2 O 3) nanoparticles and their photocatalytic activity. Adv Powder Technol 24(1):160–167

    Article  CAS  Google Scholar 

  4. Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 6:1117–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Ali A, Ambreen S, Javed R, Tabassum S, ul Haq I, Zia M (2017) ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mat Sci Eng C 74:137–145

    Article  CAS  Google Scholar 

  6. Anwar A, Ovais M, Khan A, Raza A (2017) Docetaxel loaded solid lipid nanoparticles: a novel drug delivery system. IET Nanobiotechnol 11(6):621-629

  7. Arslan O (2001) Inhibition of bovine carbonic anhydrase by new sulfonamide compounds. Biochem Mosc 66(9):982–983

    Article  CAS  Google Scholar 

  8. Ayaz M, Junaid M, Ullah F, Sadiq A, Ovais M, Ahmad W, Zeb A (2016) Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC Compl Altern Med 16(1):502

    Article  CAS  Google Scholar 

  9. Bhadra MP, Sreedhar B, Patra CR (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4:316–335

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharyya R, Medhi K, Borkataki S (2016) Plants used traditionally to treat malaria by tea-tribes in Nagaon district of Assam, India. Pleione 10(2):297–301

    Google Scholar 

  11. Bonifácio BV, da Silva PB (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15

    Article  PubMed  CAS  Google Scholar 

  12. Borthakur A, Bhattacharyya S, Anbazhagan AN, Kumar A, Dudeja PK, Tobacman JK (2012) Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB-BCL10 loop. Biochim Biophys Acta (BBA) - Mol Basis Dis 1822(8):1300–1307

    Article  CAS  Google Scholar 

  13. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  PubMed  CAS  Google Scholar 

  14. Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, Yang DC (2016) Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother 84:158–165

    Article  PubMed  CAS  Google Scholar 

  15. Clares B, A Ruiz M, Gallardo V, L Arias J (2012) Drug delivery to inflammation based on nanoparticles surface decorated with biomolecules. Curr Med Chem 19(19):3203–3211

    Article  PubMed  CAS  Google Scholar 

  16. Collier H, Dinneen L, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32(2):295–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Copeland RA (2013) Why enzymes as drug targets? In: Copeland RA (ed) Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, 2nd edn. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1-23

  18. de Almeida MC, Silva AC, Barral A, Barral Netto M (2000) A simple method for human peripheral blood monocyte isolation. Mem Inst Oswaldo Cruz 95(2):221–223

    Article  PubMed  Google Scholar 

  19. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mat Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  21. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. El-Nour KMA, Eftaiha AA, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140

    Article  CAS  Google Scholar 

  23. Fatima H, Khan K, Zia M, Ur-Rehman T, Mirza B, Haq I-u (2015) Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC Compl Altern Med 15(1):376

    Article  CAS  Google Scholar 

  24. Fedlheim DL, Foss CA (2001) Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca Raton, FL, USA

  25. Fehrenbacher JC, Vasko MR, Duarte DB (2012) Models of inflammation: carrageenan-or complete Freund’s adjuvant (CFA)–induced edema and hypersensitivity in the rat. Curr Protoc Pharmacol 5.4:1–5.4. 4

    Google Scholar 

  26. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  PubMed  CAS  Google Scholar 

  27. FutureMarketInsights (2017a) Global market for metal & metal oxide nanoparticles to surge at more than 10% CAGR. PUblisher. http://markets.businessinsider.com/news/stocks/Global-Market-for-Metal-Metal-Oxide-Nanoparticles-to-Surge-at-More-Than-10-CAGR-1001862836 Accessed 9 May 2017

  28. FutureMarketInsights (2017b) Metal & metal oxide nanoparticles market: gold nanoparticles continue to shine in terms of value owing to significant market demand: global industry analysis and opportunity assessment, 2016-2026. PUblisher. http://www.futuremarketinsights.com/reports/metal-and-metal-oxide-nanoparticles-market. Accessed 9 May 2017

  29. Gray A, Spencer P, Sewell RDE (1998) The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds. Br J Pharmacol 124(4):669–674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gray AM, Pache DM, Sewell RD (1999) Do α 2-adrenoceptors play an integral role in the antinociceptive mechanism of action of antidepressant compounds? Eur J Pharmacol 378(2):161–168

    Article  PubMed  CAS  Google Scholar 

  31. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  PubMed  CAS  Google Scholar 

  32. Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M (2016) New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 45(1):152–168

    Article  PubMed  Google Scholar 

  33. Islam NU, Ahsan F, Khan I, Shah MR, Shahid M, Khan MA (2015a) Green synthesis and biological activities of gold nanoparticles functionalized with Citrus reticulata, Citrus aurantium, Citrus sinensis and Citrus grandis. J Chem Soc Pak 37(4):721–731

    Google Scholar 

  34. Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A (2015b) Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.02.014

  35. Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, Shah MR, Khan MA (2015c) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.06.025

  36. Islam NU, Khan I, Rauf A, Muhammad N, Shahid M, Shah MR (2015d) Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of Euphorbia milii. BMC Complement Altern Med 15(1):160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Islam NU, Amin R, Shahid M, Amin M (2016) Gummy gold and silver nanoparticles of apricot (Prunus armeniaca) confer high stability and biological activity. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.02.017

  38. Islam NU, Amin R, Shahid M, Amin M, Zaib S, Iqbal J (2017) A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement Altern Med 17(1):276

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jebali A, Kazemi B (2013) Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol in Vitro 27(6):1896–1904

    Article  PubMed  CAS  Google Scholar 

  40. Kah JCY (2013) Stability and aggregation assays of nanoparticles in biological media. In: Bergese P, Hamad-Schifferli K (eds) Nanomaterial Interfaces in Biology: Methods and Protocols Humana Press, Vol. 1025, pp 119-126. 

  41. Kasithevar M, Saravanan M, Prakash P, Kumar H, Ovais M, Barabadi H, Shinwari ZK (2017) Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J Interdiscip Nanomed 2(2):131–141

    Article  CAS  Google Scholar 

  42. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9(8):604–616

    Article  PubMed  CAS  Google Scholar 

  43. Khalil AT, Ali M, Tanveer F, Ovais M, Idrees M, Shinwari ZK, Hollenbeck JE (2017a) Emerging viral infections in Pakistan: issues, concerns, and future prospects. Health Secur 15(3):268–281

    Article  PubMed  Google Scholar 

  44. Khalil AT, Ovais M, Ullah I, Ali M, Khan Shinwari Z, Maaza M (2017b) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev 10(4):186–201

    Article  CAS  Google Scholar 

  45. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M (2017c) Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol:1–15

  46. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Khamlich S, Maaza M (2017d) Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12(15):1767–1789

    Article  PubMed  CAS  Google Scholar 

  47. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017e) Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.) Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.07.004

  48. Lee SK, Mbwambo Z, Chung H, Luyengi L, Gamez E, Mehta R, Kinghorn A, Pezzuto J (1998) Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1(1):35–46

    PubMed  CAS  Google Scholar 

  49. Malagoli D (2007) A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebrate Surviv J 4(2):92–94

    Google Scholar 

  50. Matsumoto H, Naraba H, Ueno A, Fujiyoshi T, Murakami M, Kudo I, Oh-ishi S (1998) Induction of cyclooxygenase-2 causes an enhancement of writhing response in mice. Eur J Pharmacol 352(1):47–52

    Article  PubMed  CAS  Google Scholar 

  51. Mazario J, Gaitan G, Herrero JF (2001) Cyclooxygenase-1 vs. cyclooxygenase-2 inhibitors in the induction of antinociception in rodent withdrawal reflexes. Neuropharmacology 40(7):937–946

    Article  PubMed  CAS  Google Scholar 

  52. Merskey H, Bogduk N (1994) Task Force on Taxonomy of the International Association for the Study of Pain. Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms, Second edn. IASP Press, Seattle, pp 210–213

    Google Scholar 

  53. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57(1):1–164

    Article  PubMed  CAS  Google Scholar 

  54. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  PubMed  CAS  Google Scholar 

  55. Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fátima  (2015) An overview on the potential of natural products as ureases inhibitors: a review. J Adv Res 6(1):35–44

    Article  PubMed  CAS  Google Scholar 

  56. Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430(6996):242–249

    Article  PubMed  CAS  Google Scholar 

  57. Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse. Inflamm Protoc (255):115–121

  58. Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS (2010) Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2(5):763–770

    Article  PubMed  CAS  Google Scholar 

  59. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166(2):182–194

    Article  PubMed  CAS  Google Scholar 

  60. Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852

    Article  PubMed  CAS  Google Scholar 

  61. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 12(23):3157–3177

    Article  CAS  Google Scholar 

  62. Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK (2017) Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. App Microbiol Biotechnol:1–15

  63. Ovais M, Ayaz M, Khalil AT, Shah SA, Jan MS, Raza A, Shahid M, Shinwari ZK (2018) HPLC-DAD finger printing, antioxidant, cholinesterase, and α-glucosidase inhibitory potentials of a novel plant Olax nana. BMC Compl Altern Med 18(1):1

    Article  Google Scholar 

  64. Polk DB, Peek RM (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10(6):403–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Randhawa PK, Singh K, Singh N, Jaggi AS (2014) A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18(4):279–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ren K, Dubner R (1999) Inflammatory models of pain and hyperalgesia. ILAR J 40(3):111–118

    Article  PubMed  Google Scholar 

  67. Rizzello L, Cingolani R, Pompa PP (2013) Nanotechnology tools for antibacterial materials. Nanomedicine 8(5):807–821

    Article  PubMed  CAS  Google Scholar 

  68. Saini D, Dubey R, Srivastava RJ, Singh KK, Chakraborti M (2010) Utilization of traditional plant diversity for poverty eradication in India. National Conference on Biodiversity, Development and Poverty Alleviation Uttar Pradesh State Biodiversity Board, pp 137-144

  69. Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces 88(1):325–331

    Article  PubMed  CAS  Google Scholar 

  70. Soh JH, Gao Z (2012) Metal nanoparticles in biomedical applications. In: Sau TK, Rogach AL (eds) Complex-shaped metal nanoparticles: bottom-up syntheses and applications. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 477-519

  71. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84

    Article  PubMed  CAS  Google Scholar 

  72. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908

    Article  PubMed  CAS  Google Scholar 

  73. Sprintz M, Benedetti C, Ferrari M (2004) Applied nanotechnology for the management of breakthrough cancer pain. Minerva Anestesiol 71(7–8):419–423

    Google Scholar 

  74. Sprintz M, Tasciotti E, Allegri M, Grattoni A, Driver LC, Ferrari M (2011) Nanomedicine: ushering in a new era of pain management. Eur J Pain Suppl 5(S2):317–322

    Article  CAS  Google Scholar 

  75. Subbaiya R, Priya A, Shankar K, Selvam M, Ovais M, Balajee R, Barabadi H, Muthupandian S (2017) Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol 11(8):965-972

  76. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7(2):168–181

    Article  PubMed  CAS  Google Scholar 

  77. Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318

    Article  CAS  Google Scholar 

  78. Weatherburn M (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974

    Article  CAS  Google Scholar 

  79. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175

    Article  PubMed  CAS  Google Scholar 

  80. Woodford N, Livermore DM (2009) Infections caused by Gram-positive bacteria: a review of the global challenge. J Inf Secur 59:S4–S16

    Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the Norwegian University of Science and Technology (NTNU), Norway for provision of TEM facility.

Funding

The study was funded by the PAK-NORWAY Institutional Cooperation Program, PK3004, and COMSTECH-TWAS project (12-198 RG/PHA/AS_C—UNESCO FR3240270874).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nazar Ul Islam.

Ethics declarations

Ethical approval

The in vivo biological activities were performed on BALB/c mice of either sex weighing 25–35 g. The animals were purchased from the National Institute of Health (NIH), Islamabad. These were acclimatized in a 12-h light/dark cycle at 22 ± 2 °C for 1 week prior to experiments. The animals had ad libitum access to food and water during this period. The experimental protocols on animals were approved by the Institutional Animals Use and Care Committee and were in accordance to the NIH guidelines for the care and use of laboratory animals.

Healthy adult male volunteers (ages ranging from 20 to 25 years) were recruited for the study and the inclusion was based on obtaining detailed medical history and clinical examination. The aims of the study were explained to the volunteers and informed consent was obtained from the respective participants at the start of the study. The study protocols were approved by the Institutional Ethical Committee and were in accordance with the principles of the 1964 Helsinki declaration and its later amendments.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ovais, M., Khalil, A.T., Raza, A. et al. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol 102, 4393–4408 (2018). https://doi.org/10.1007/s00253-018-8928-2

Download citation

Keywords

  • Phyto-nanotechnology
  • Green synthesis of nanoparticles
  • Green nanotechnology
  • Biological potential of nanoparticles
  • Nanoparticle drug delivery
  • Biocompatible nanoparticles