Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 10, pp 4243–4253 | Cite as

Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria

  • Sen Zheng
  • Kenji Sonomoto
Mini-Review

Abstract

Bacteriocins are ribosomally synthesised small antimicrobial peptides produced from a wide range of bacteria, and also rich sources for potential alternatives to traditional antibiotics. Many bacteriocins have highly specific antibacterial activity against target pathogens, even including drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. As the final and essential step during biosynthesis, the leader sequence removal and exportation of matured bacteriocin are lacking of research and therefore the last to be understood. In respect of production, bacteriocin precursor peptides are processed and exported by a group of membrane proteins from the ATP-binding cassette transporter family. The main aims of this article are to summarise knowledge till now on the leader signal and correlated transporters for bacteriocin secretion in gram-positive bacteria in a review for the first time, to introduce different strategies for higher production, and to offer new insights into many essential but still unanswered questions above for the purpose of more efficient bacteriocin utilisation.

Keywords

Bacteriocin ABC transporter Gram-positive bacteria Leader peptide Peptidase 

Notes

Acknowledgements

Sen Zheng acknowledges the Ajinomoto Scholarship Foundation, Japan fellowship, for the financial aid through this study.

Funding

This work was partially supported by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS), grant number JP26292040.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8917_MOESM1_ESM.pdf (308 kb)
ESM 1 (PDF 308 kb)

References

  1. Allison GE, Worobo RW, Stiles ME, Klaenhammer TR (1995) Heterologous expression of the lactacin F peptides by Carnobacterium piscicola LV17. Appl Environ Microbiol 61(4):1371–1377PubMedPubMedCentralGoogle Scholar
  2. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160.  https://doi.org/10.1039/c2np20085f PubMedPubMedCentralCrossRefGoogle Scholar
  3. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98(3):585–603PubMedCrossRefGoogle Scholar
  4. Bagley MC, Dale JW, Merritt EA, Xiong X (2005) Thiopeptide antibiotics. Chem Rev 105(2):685–714.  https://doi.org/10.1021/cr0300441 PubMedCrossRefGoogle Scholar
  5. Biet F, Berjeaud JM, Worobo RW, Cenatiempo Y, Fremaux C (1998) Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology 144(Pt 10):2845–2854.  https://doi.org/10.1099/00221287-144-10-2845 PubMedCrossRefGoogle Scholar
  6. Birri DJ, Brede DA, Forberg T, Holo H, Nes IF (2010) Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. Appl Environ Microbiol 76(2):483–492.  https://doi.org/10.1128/AEM.01597-09 PubMedCrossRefGoogle Scholar
  7. Boakes S, Ayala T, Herman M, Appleyard AN, Dawson MJ, Cortes J (2012) Generation of an actagardine A variant library through saturation mutagenesis. Appl Microbiol Biotechnol 95(6):1509–1517.  https://doi.org/10.1007/s00253-012-4041-0 PubMedCrossRefGoogle Scholar
  8. Bowers AA, Acker MG, Koglin A, Walsh CT (2010) Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. J Am Chem Soc 132(21):7519–7527.  https://doi.org/10.1021/ja102339q PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bryan P, Alexander P, Strausberg S, Schwarz F, Lan W, Gilliland G, Gallagher DT (1992) Energetics of folding subtilisin BPN'. Biochemistry 31(21):4937–4945PubMedCrossRefGoogle Scholar
  10. Caspers M, Freudl R (2008) Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability. Arch Microbiol 189(6):605–610.  https://doi.org/10.1007/s00203-008-0351-0 PubMedCrossRefGoogle Scholar
  11. Chen P, Qi FX, Novak J, Krull RE, Caufield PW (2001) Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. FEMS Microbiol Lett 195(2):139–144PubMedCrossRefGoogle Scholar
  12. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63(11):4321–4330PubMedPubMedCentralGoogle Scholar
  13. Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci U S A 107(37):16297–16302.  https://doi.org/10.1073/pnas.1008608107 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788.  https://doi.org/10.1038/nrmicro1273 PubMedCrossRefGoogle Scholar
  15. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105.  https://doi.org/10.1038/nrmicro2937 PubMedCrossRefGoogle Scholar
  16. Cregg KM, Wilding I, Black MT (1996) Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus. J Bacteriol 178(19):5712–5718PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260(29):15925–15931PubMedGoogle Scholar
  18. De Kwaadsteniet M, Fraser T, Van Reenen CA, Dicks LM (2006) Bacteriocin T8, a novel class IIa sec-dependent bacteriocin produced by Enterococcus faecium T8, isolated from vaginal secretions of children infected with human immunodeficiency virus. Appl Environ Microbiol 72(7):4761–4766.  https://doi.org/10.1128/AEM.00436-06 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Duong F, Eichler J, Price A, Leonard MR, Wickner W (1997) Biogenesis of the gram-negative bacterial envelope. Cell 91(5):567–573PubMedCrossRefGoogle Scholar
  20. Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian KD (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol 58(11):3730–3743PubMedPubMedCentralGoogle Scholar
  21. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24(1):85–106PubMedCrossRefGoogle Scholar
  22. Escano J, Stauffer B, Brennan J, Bullock M, Smith L (2015) Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. J Bacteriol 197(7):1173–1184.  https://doi.org/10.1128/JB.02531-14 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fath MJ, Kolter R (1993) ABC transporters: bacterial exporters. Microbiol Rev 57(4):995–1017PubMedPubMedCentralGoogle Scholar
  24. Fluhe L, Knappe TA, Gattner MJ, Schafer A, Burghaus O, Linne U, Marahiel MA (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 8(4):350–357.  https://doi.org/10.1038/nchembio.798 PubMedCrossRefGoogle Scholar
  25. Franke CM, Tiemersma J, Venema G, Kok J (1999) Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. Involvement of LcnC in lactococcin a maturation. J Biol Chem 274(13):8484–8490PubMedCrossRefGoogle Scholar
  26. Furgerson Ihnken LA, Chatterjee C, van der Donk WA (2008) In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochemistry 47(28):7352–7363.  https://doi.org/10.1021/bi800278n PubMedCrossRefGoogle Scholar
  27. Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80(22):6854–6862.  https://doi.org/10.1128/AEM.02284-14 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gebhard S (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria—phylogeny, function and regulation. Mol Microbiol 86(6):1295–1317.  https://doi.org/10.1111/mmi.12078 PubMedCrossRefGoogle Scholar
  29. Gomez-Escribano JP, Song LJ, Bibb MJ, Challis GL (2012) Posttranslational β-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chem Sci 3(12):3522–3525.  https://doi.org/10.1039/c2sc21183a CrossRefGoogle Scholar
  30. Havarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16(2):229–240PubMedCrossRefGoogle Scholar
  31. Hayashi S, Ozaki T, Asamizu S, Ikeda H, Omura S, Oku N, Igarashi Y, Tomoda H, Onaka H (2014) Genome mining reveals a minimum gene set for the biosynthesis of 32-membered macrocyclic thiopeptides lactazoles. Chem Biol 21(5):679–688.  https://doi.org/10.1016/j.chembiol.2014.03.008 PubMedCrossRefGoogle Scholar
  32. Heidrich C, Pag U, Josten M, Metzger J, Jack RW, Bierbaum G, Jung G, Sahl HG (1998) Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl Environ Microbiol 64(9):3140–3146PubMedPubMedCentralGoogle Scholar
  33. Herranz C, Driessen AJ (2005) Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis. Appl Environ Microbiol 71(4):1959–1963.  https://doi.org/10.1128/AEM.71.4.1959-1963.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hille M, Kies S, Gotz F, Peschel A (2001) Dual role of GdmH in producer immunity and secretion of the staphylococcal lantibiotics gallidermin and epidermin. Appl Environ Microbiol 67(3):1380–1383.  https://doi.org/10.1128/AEM.67.3.1380-1383.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hillman JD, Novak J, Sagura E, Gutierrez JA, Brooks TA, Crowley PJ, Hess M, Azizi A, Leung K, Cvitkovitch D, Bleiweis AS (1998) Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 66(6):2743–2749PubMedPubMedCentralGoogle Scholar
  36. Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17(4):412–418.  https://doi.org/10.1016/j.sbi.2007.07.003 PubMedCrossRefGoogle Scholar
  37. Hou Y, Tianero MD, Kwan JC, Wyche TP, Michel CR, Ellis GA, Vazquez-Rivera E, Braun DR, Rose WE, Schmidt EW, Bugni TS (2012) Structure and biosynthesis of the antibiotic bottromycin D. Org Lett 14(19):5050–5053.  https://doi.org/10.1021/ol3022758 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hui FM, Zhou L, Morrison DA (1995) Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153(1):25–31PubMedCrossRefGoogle Scholar
  39. Huo L, Rachid S, Stadler M, Wenzel SC, Muller R (2012) Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol 19(10):1278–1287.  https://doi.org/10.1016/j.chembiol.2012.08.013 PubMedCrossRefGoogle Scholar
  40. Huo L, Okesli A, Zhao M, van der Donk WA (2017) Insights into the biosynthesis of duramycin. Appl Environ Microbiol 83(3):e02698–e02616.  https://doi.org/10.1128/AEM.02698-16 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ishii S, Yano T, Hayashi H (2006) Expression and characterization of the peptidase domain of Streptococcus pneumoniae ComA, a bifunctional ATP-binding cassette transporter involved in quorum sensing pathway. J Biol Chem 281(8):4726–4731.  https://doi.org/10.1074/jbc.M512516200 PubMedCrossRefGoogle Scholar
  42. Ishii S, Yano T, Ebihara A, Okamoto A, Manzoku M, Hayashi H (2010) Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway. J Biol Chem 285(14):10777–10785.  https://doi.org/10.1074/jbc.M109.093781 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ishii S, Yano T, Okamoto A, Murakawa T, Hayashi H (2013) Boundary of the nucleotide-binding domain of Streptococcus ComA based on functional and structural analysis. Biochemistry 52(15):2545–2555.  https://doi.org/10.1021/bi3017069 PubMedCrossRefGoogle Scholar
  44. Izaguirre G, Hansen JN (1997) Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the SpaT transporter in the posttranslational modifications and secretion of subtilin in Bacillus subtilis 168. Appl Environ Microbiol 63(10):3965–3971PubMedPubMedCentralGoogle Scholar
  45. Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J (2003) Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Appl Environ Microbiol 69(10):5839–5848PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kimura H, Nagano R, Matsusaki H, Sonomoto K, Ishizaki A (1997) A bacteriocin of strain Pediococcus sp. ISK-1 isolated from Nukadoko, bed of fermented rice bran. Biosci Biotechnol Biochem 61(6):1049–1051PubMedCrossRefGoogle Scholar
  47. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85PubMedCrossRefGoogle Scholar
  48. Klein C, Kaletta C, Schnell N, Entian KD (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58(1):132–142PubMedPubMedCentralGoogle Scholar
  49. Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G (2014) Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 28(4):1780–1793.  https://doi.org/10.1096/fj.13-241737 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJM, Leenhouts K, Kuipers OP, Moll GN (2004) NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279(21):22176–22182.  https://doi.org/10.1074/jbc.M312789200 PubMedCrossRefGoogle Scholar
  51. Lee VT, Schneewind O (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15(14):1725–1752.  https://doi.org/10.1101/gad.896801 PubMedCrossRefGoogle Scholar
  52. Lee H, Churey JJ, Worobo RW (2009) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299(2):205–213.  https://doi.org/10.1111/j.1574-6968.2009.01749.x PubMedCrossRefGoogle Scholar
  53. Letzel AC, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 15:983.  https://doi.org/10.1186/1471-2164-15-983 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lin DY, Huang S, Chen J (2015) Crystal structures of a polypeptide processing and secretion transporter. Nature 523(7561):425–430.  https://doi.org/10.1038/nature14623 PubMedCrossRefGoogle Scholar
  55. Mann G, Huo L, Adam S, Nardone B, Vendome J, Westwood NJ, Muller R, Koehnke J (2016) Structure and substrate recognition of the bottromycin maturation enzyme BotP. Chembiochem 17(23):2286–2292.  https://doi.org/10.1002/cbic.201600406 PubMedCrossRefGoogle Scholar
  56. Martin M, Gutierrez J, Criado R, Herranz C, Cintas LM, Hernandez PE (2007) Chimeras of mature pediocin PA-1 fused to the signal peptide of enterocin P permits the cloning, production, and expression of pediocin PA-1 in Lactococcus lactis. J Food Prot 70(12):2792–2798PubMedCrossRefGoogle Scholar
  57. Martinez B, Fernandez M, Suarez JE, Rodriguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145(Pt 11):3155–3161.  https://doi.org/10.1099/00221287-145-11-3155 PubMedCrossRefGoogle Scholar
  58. Martinez-Bueno M, Valdivia E, Galvez A, Coyette J, Maqueda M (1998) Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol Microbiol 27(2):347–358PubMedCrossRefGoogle Scholar
  59. Mazmanian SK, Ton-That H, Schneewind O (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40(5):1049–1057PubMedCrossRefGoogle Scholar
  60. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25(3):285–308PubMedCrossRefGoogle Scholar
  61. McCormick JK, Worobo RW, Stiles ME (1996) Expression of the antimicrobial peptide carnobacteriocin B2 by a signal peptide-dependent general secretory pathway. Appl Environ Microbiol 62(11):4095–4099PubMedPubMedCentralGoogle Scholar
  62. Mesa-Pereira B, O'Connor PM, Rea MC, Cotter PD, Hill C, Ross RP (2017) Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli. Sci Rep 7(1):3069.  https://doi.org/10.1038/s41598-017-02868-w PubMedPubMedCentralCrossRefGoogle Scholar
  63. Meyer C, Bierbaum G, Heidrich C, Reis M, Suling J, Iglesias-Wind MI, Kempter C, Molitor E, Sahl HG (1995) Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur J Biochem 232(2):478–489PubMedCrossRefGoogle Scholar
  64. Mo TL, Liu WQ, Ji WJ, Zhao JF, Chen T, Ding W, Yu SN, Zhang Q (2017) Biosynthetic insights into linaridin natural products from genome mining and precursor peptide mutagenesis. ACS Chem Biol 12(6):1484–1488.  https://doi.org/10.1021/acschembio.7b00262 PubMedCrossRefGoogle Scholar
  65. Nagao J, Aso Y, Shioya K, Nakayama J, Sonomoto K (2007) Lantibiotic engineering: molecular characterization and exploitation of lantibiotic-synthesizing enzymes for peptide engineering. J Mol Microbiol Biotechnol 13(4):235–242.  https://doi.org/10.1159/000104749 PubMedCrossRefGoogle Scholar
  66. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Anton Leeuw 70(2–4):113–128CrossRefGoogle Scholar
  67. Nes IF, Holo H, Fimland G, Hauge HH, Nissen-Meyer J (2001) Unmodified peptide-bacteriocins (class II) produced by lactic acid bacteria. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG (eds) Peptide antibiotics: discovery, modes of action and applications. Marcel Dekker, Inc, New York. pp 81–115Google Scholar
  68. Netz DJ, Sahl HG, Marcelino R, dos Santos NJ, de Oliveira SS, Soares MB, do Carmo de Freire Bastos M (2001) Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 311(5):939–949.  https://doi.org/10.1006/jmbi.2001.4885 PubMedCrossRefGoogle Scholar
  69. Nishie M, Shioya K, Nagao J, Jikuya H, Sonomoto K (2009) ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. J Biosci Bioeng 108(6):460–464.  https://doi.org/10.1016/j.jbiosc.2009.06.002 PubMedCrossRefGoogle Scholar
  70. Nishie M, Sasaki M, Nagao J, Zendo T, Nakayama J, Sonomoto K (2011) Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J Biol Chem 286(13):11163–11169.  https://doi.org/10.1074/jbc.M110.212704 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174(17):5686–5692PubMedPubMedCentralCrossRefGoogle Scholar
  72. Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6(1):9–18.  https://doi.org/10.1038/nchembio.286 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Oppegard C, Fimland G, Anonsen JH, Nissen-Meyer J (2015) The pediocin PA-1 accessory protein ensures correct disulfide bond formation in the antimicrobial peptide pediocin PA-1. Biochemistry 54(19):2967–2974.  https://doi.org/10.1021/acs.biochem.5b00164 PubMedCrossRefGoogle Scholar
  74. Ortega MA, Velasquez JE, Garg N, Zhang Q, Joyce RE, Nair SK, van der Donk WA (2014) Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO. ACS Chem Biol 9(8):1718–1725.  https://doi.org/10.1021/cb5002526 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ovchinnikov KV, Chi H, Mehmeti I, Holo H, Nes IF, Diep DB (2016) Novel group of leaderless multipeptide bacteriocins from gram-positive bacteria. Appl Environ Microbiol 82(17):5216–5224.  https://doi.org/10.1128/AEM.01094-16 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273(36):23134–23142PubMedCrossRefGoogle Scholar
  77. Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA (2008) The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 47(28):7342–7351.  https://doi.org/10.1021/bi800277d PubMedPubMedCentralCrossRefGoogle Scholar
  78. Perez RH, Ishibashi N, Inoue T, Himeno K, Masuda Y, Sawa N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2015) Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J Bacteriol 198(2):291–300.  https://doi.org/10.1128/JB.00692-15 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Peschel A, Schnell N, Hille M, Entian KD, Gotz F (1997) Secretion of the lantibiotics epidermin and gallidermin: sequence analysis of the genes gdmT and gdmH, their influence on epidermin production and their regulation by EpiQ. Mol Gen Genet 254(3):312–318PubMedCrossRefGoogle Scholar
  80. Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57(1):50–108PubMedPubMedCentralGoogle Scholar
  81. Qi F, Chen P, Caufield PW (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66(8):3221–3229PubMedPubMedCentralCrossRefGoogle Scholar
  82. Qiao M, Saris PE (1996) Evidence for a role of NisT in transport of the lantibiotic nisin produced by Lactococcus lactis N8. FEMS Microbiol Lett 144(1):89–93PubMedCrossRefGoogle Scholar
  83. Rea MC, Sit CS, Clayton E, O'Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A 107(20):9352–9357.  https://doi.org/10.1073/pnas.0913554107 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rea MC, Ross RP, Cotter PD, Hill C (2011) Classification of bacteriocins from gram-positive bacteria. Springer, New YorkCrossRefGoogle Scholar
  85. Repka LM, Chekan JR, Nair SK, van der Donk WA (2017) Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev 117(8):5457–5520.  https://doi.org/10.1021/acs.chemrev.6b00591 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rodriguez JM, Martinez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80(2):101–116PubMedCrossRefGoogle Scholar
  87. Schneewind O, Missiakas D (2014) Sec-secretion and sortase-mediated anchoring of proteins in gram-positive bacteria. Biochim Biophys Acta 1843(8):1687–1697.  https://doi.org/10.1016/j.bbamcr.2013.11.009 PubMedCrossRefGoogle Scholar
  88. Schnell N, Engelke G, Augustin J, Rosenstein R, Ungermann V, Gotz F, Entian KD (1992) Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur J Biochem 204(1):57–68PubMedCrossRefGoogle Scholar
  89. Shimamura H, Gouda H, Nagai K, Hirose T, Ichioka M, Furuya Y, Kobayashi Y, Hirono S, Sunazuka T, Omura S (2009) Structure determination and total synthesis of bottromycin A2: a potent antibiotic against MRSA and VRE. Angew Chem Int Ed Engl 48(5):914–917.  https://doi.org/10.1002/anie.200804138 PubMedCrossRefGoogle Scholar
  90. Skaugen M, Abildgaard CI, Nes IF (1997) Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Mol Gen Genet 253(6):674–686PubMedCrossRefGoogle Scholar
  91. Sprules T, Kawulka KE, Gibbs AC, Wishart DS, Vederas JC (2004) NMR solution structure of the precursor for carnobacteriocin B2, an antimicrobial peptide from Carnobacterium piscicola. Eur J Biochem 271(9):1748–1756.  https://doi.org/10.1111/j.1432-1033.2004.04085.x PubMedCrossRefGoogle Scholar
  92. Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL (1992) Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol 58(6):1952–1961PubMedPubMedCentralGoogle Scholar
  93. Su TL (1948) Micrococcin, an antibacterial substance formed by a strain of Micrococcus. Br J Exp Pathol 29(5):473–481PubMedPubMedCentralGoogle Scholar
  94. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J Bacteriol 178(12):3585–3593PubMedPubMedCentralCrossRefGoogle Scholar
  95. Uguen M, Uguen P (2002) The LcnC homologue cannot replace LctT in lacticin 481 export. FEMS Microbiol Lett 208(1):99–103PubMedCrossRefGoogle Scholar
  96. van Belkum MJ, Worobo RW, Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23(6):1293–1301PubMedCrossRefGoogle Scholar
  97. van Belkum MJ, Martin-Visscher LA, Vederas JC (2010) Cloning and characterization of the gene cluster involved in the production of the circular bacteriocin carnocyclin a. Probiotics Antimicrob Proteins 2(4):218–225.  https://doi.org/10.1007/s12602-010-9056-1 PubMedCrossRefGoogle Scholar
  98. van de Kamp M, van den Hooven HW, Konings RN, Bierbaum G, Sahl HG, Kuipers OP, Siezen RJ, de Vos WM, Hilbers CW, van de Ven FJ (1995) Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Cloning and characterisation of the epilancin-K7-encoding gene and NMR analysis of mature epilancin K7. Eur J Biochem 230(2):587–600PubMedCrossRefGoogle Scholar
  99. van den Berg van Saparoea HB, Bakkes PJ, Moll GN, Driessen AJ (2008) Distinct contributions of the nisin biosynthesis enzymes NisB and NisC and transporter NisT to prenisin production by Lactococcus lactis. Appl Environ Microbiol 74(17):5541–5548.  https://doi.org/10.1128/AEM.00342-08 CrossRefGoogle Scholar
  100. van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos WM (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175(9):2578–2588PubMedPubMedCentralCrossRefGoogle Scholar
  101. van der Meer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, de Vos WM (1994) Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem 269(5):3555–3562PubMedGoogle Scholar
  102. van Roosmalen ML, Geukens N, Jongbloed JD, Tjalsma H, Dubois JY, Bron S, van Dijl JM, Anne J (2004) Type I signal peptidases of gram-positive bacteria. Biochim Biophys Acta 1694(1–3):279–297.  https://doi.org/10.1016/j.bbamcr.2004.05.006 PubMedCrossRefGoogle Scholar
  103. Vaughan A, Eijsink VG, van Sinderen D (2003) Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69(12):7194–7203PubMedPubMedCentralCrossRefGoogle Scholar
  104. Velasquez JE, van der Donk WA (2011) Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 15(1):11–21.  https://doi.org/10.1016/j.cbpa.2010.10.027 PubMedCrossRefGoogle Scholar
  105. Velasquez JE, Zhang X, van der Donk WA (2011) Biosynthesis of the antimicrobial peptide epilancin 15X and its N-terminal lactate. Chem Biol 18(7):857–867.  https://doi.org/10.1016/j.chembiol.2011.05.007 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Waisvisz JM, Vanderhoeven MG, Vanpeppen J, Zwennis WCM (1957) Bottromycin. I. A new sulfur-containing antibiotic. J Am Chem Soc 79(16):4520–4521.  https://doi.org/10.1021/Ja01573a072 CrossRefGoogle Scholar
  107. Widdick DA, Dodd HM, Barraille P, White J, Stein TH, Chater KF, Gasson MJ, Bibb MJ (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci U S A 100(7):4316–4321.  https://doi.org/10.1073/pnas.0230516100 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wieland Brown LC, Acker MG, Clardy J, Walsh CT, Fischbach MA (2009) Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci U S A 106(8):2549–2553.  https://doi.org/10.1073/pnas.0900008106 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME (1995) A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J Bacteriol 177(11):3143–3149PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wu KH, Tai PC (2004) Cys32 and His105 are the critical residues for the calcium-dependent cysteine proteolytic activity of CvaB, an ATP-binding cassette transporter. J Biol Chem 279(2):901–909.  https://doi.org/10.1074/jbc.M308296200 PubMedCrossRefGoogle Scholar
  111. Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA (2004) Lacticin 481: In vitro reconstitution of lantibiotic synthetase activity. Science 303(5658):679–681.  https://doi.org/10.1126/science.1092600 PubMedCrossRefGoogle Scholar
  112. Xu Y, Li X, Li R, Li S, Ni H, Wang H, Xu H, Zhou W, Saris PE, Yang W, Qiao M, Rao Z (2014) Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity. Acta Crystallogr D Biol Crystallogr 70(Pt 6):1499–1505.  https://doi.org/10.1107/S1399004714004234 PubMedCrossRefGoogle Scholar
  113. Young TS, Walsh CT (2011) Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans. Proc Natl Acad Sci U S A 108(32):13053–13058.  https://doi.org/10.1073/pnas.1110435108 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhang H, Zhou W, Zhuang Y, Liang X, Liu T (2013) Draft genome sequence of Streptomyces bottropensis ATCC 25435, a bottromycin-producing actinomycete. Genome Announc 1(2):e0001913.  https://doi.org/10.1128/genomeA.00019-13 PubMedCrossRefGoogle Scholar
  115. Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA (2015) Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria. Appl Environ Microbiol 81(13):4339–4350.  https://doi.org/10.1128/AEM.00635-15 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182(11):3266–3273PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zheng Q, Wang S, Duan P, Liao R, Chen D, Liu W (2016) An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Proc Natl Acad Sci U S A 113(50):14318–14323.  https://doi.org/10.1073/pnas.1612607113 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zheng S, Nagao J, Nishie M, Zendo T, Sonomoto K (2018) ATPase activity regulation by leader peptide processing of ABC transporter maturation and secretion protein, NukT, for lantibiotic nukacin ISK-1. Appl Microbiol Biotechnol 102(2):763–772.  https://doi.org/10.1007/s00253-017-8645-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan

Personalised recommendations