Skip to main content
Log in

Two trehalose-hydrolyzing enzymes from Crenarchaeon Sulfolobus acidocaldarius exhibit distinct activities and affinities toward trehalose

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two archaeal trehalase-like genes, Saci1250 and Saci1816, belonging to glycoside hydrolase family 15 (GH15) from the acidophilic Crenarchaeon Sulfolobus acidocaldarius were expressed in Escherichia coli. The gene products showed trehalose-hydrolyzing activities, and the names SaTreH1 and SaTreH2 were assigned to Saci1816 and Saci1250 gene products, respectively. These newly identified enzymes functioned within a narrow range of acidic pH values at elevated temperatures, which is similar to the behavior of Euryarchaeota Thermoplasma trehalases. SaTreH1 displayed high KM and kcat values, whereas SaTreH2 had lower KM and kcat values despite a high degree of identity in their primary structures. A mutation analysis indicated that two glutamic acid residues in SaTreH1, E374 and E574, may be involved in trehalase catalysis because SaTreH1 E374Q and E574Q showed greatly reduced trehalose-hydrolyzing activities. Additional mutations substituting G573 and H575 residues with serine and glutamic acid residues, respectively, to mimic the TVN1315 sequence resulted in a decrease in trehalase activity and thermal stability. Taken together, the results indicated that Crenarchaea trehalases adopt active site structures that are similar to Euryarchaeota enzymes but have distinct molecular features. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 trehalases as well as other family enzymes and will provide insights into archaeal trehalose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

We are grateful to Yukari Saisaka (High-Tech Research Center, Meiji Pharmaceutical University) for performing the N-terminal sequence analysis and Misa Ohno, Kazuaki Okawa, and Satoshi Wakita for their valuable suggestions.

Funding

This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Number 17 K07729); the Strategic Research Foundation Grant-aided Project for Private Universities of the Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT) (Grant Number S1411005); the Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private Schools of Japan; and the Project Research Grant from the Research Institute of Science and Technology, Kogakuin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Sakaguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Electronic supplementary material

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuasa, M., Okamura, T., Kimura, M. et al. Two trehalose-hydrolyzing enzymes from Crenarchaeon Sulfolobus acidocaldarius exhibit distinct activities and affinities toward trehalose. Appl Microbiol Biotechnol 102, 4445–4455 (2018). https://doi.org/10.1007/s00253-018-8915-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8915-7

Keywords

Navigation