Achal V, Mukherjee A, Reddy MS (2011) Microbial concrete: way to enhance the durability of building structures. J Mater Civ Eng 23:730–734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159
Article
CAS
Google Scholar
Alghamri R, Kanellopoulos A, Al-Tabbaa A (2016) Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr Build Mater 124:910–921
Article
CAS
Google Scholar
Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. https://doi.org/10.2147/NSA.S99986
Article
PubMed
PubMed Central
CAS
Google Scholar
ASTM C39/C 39M–99 (2015) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA www.astm.org
Google Scholar
ASTM C 157/C 157M–99 (2017) Standard test method for length change of hardened hydraulic-cement mortar and concrete. ASTM International, West Conshohocken, PA www.astm.org
Google Scholar
ASTM C490/C 490M-00 (2017) Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. ASTM International, West Conshohocken, PA www.astm.org
Google Scholar
Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794
Article
PubMed
CAS
Google Scholar
Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211. https://doi.org/10.1146/annurev-matsci-070909-104532
Article
CAS
Google Scholar
Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14–30. https://doi.org/10.1016/0022-0248(88)90294-1
Article
CAS
Google Scholar
Burne RA, Chen YYM (2000) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542. https://doi.org/10.1016/S1286-4579(00)00312-9
Article
PubMed
CAS
Google Scholar
Dry C, McMillan W (1996) Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater Struct 5:297–300
Article
CAS
Google Scholar
Dry CM (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem Concr Res 30:1969–1977. https://doi.org/10.1016/S0008-8846(00)00415-4
Article
CAS
Google Scholar
Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y (2012a) Synthesis, characterization and anti-Listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci 8:868–874. https://doi.org/10.2174/157341312803989178
Article
CAS
Google Scholar
Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012b) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Kor Chem Soc 33:3957–3962. https://doi.org/10.5012/bkcs.2012.33.12.3957
Article
CAS
Google Scholar
Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539. https://doi.org/10.1016/j.colsurfb.2012.08.046
Article
CAS
Google Scholar
Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J, Ghasemi Y (2014) Impacts of iron oxide nanoparticles on the invasion power of Listeria monocytogenes. Curr Nanosci 10:382–388
Article
CAS
Google Scholar
Ebrahiminezhad A, Rasoul-Amini S, Kouhpayeh A, Davaran S, Barar J, Ghasemi Y (2015a) Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr Nanosci 11:113–119. https://doi.org/10.2174/1573413710666140911224743
Article
CAS
Google Scholar
Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A (2015b) Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: a step towards process intensification. Nano 6:1–9
Google Scholar
Ebrahiminezhad A, Varma V, Yang S, Berenjian A (2016) Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol 100:173–180
Article
PubMed
CAS
Google Scholar
Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y (2015) Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). J Nanomater 2015:1–9. https://doi.org/10.1155/2015/451405
Article
CAS
Google Scholar
Gholami A, Rasoul-Amini S, Ebrahiminezhad A, Abootalebi N, Niroumand U, Ebrahimi N, Ghasemi Y (2016) Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnol 28:177–186
Google Scholar
Gnanaprakash G, Mahadevan S, Jayakumar T, Kalyanasundaram P, Philip J, Raj B (2007) Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater Chem Phys 103:168–175. https://doi.org/10.1016/j.matchemphys.2007.02.011
Article
CAS
Google Scholar
Güneyisi E, Gesoğlu M, Mermerdaş K (2008) Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater Struct 41:937–949
Article
CAS
Google Scholar
Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
Article
PubMed
CAS
Google Scholar
Harris DC (1995) Quantitative chemical analysis. W.H. Freeman, New York
Google Scholar
Huang H, Ye G, Leung C, Wan K (2011) Application of sodium silicate solution as self-healing agent in cementitious materials. International RILEM Conference on Advances in Construction Materials Through Science and Engineering. RILEM Publications SARL, Hong Kong, China, pp 530–536
Google Scholar
Joseph C, Jefferson A, Cantoni M (2007) Issues relating to the autonomic healing of cementitious materials. First International Conference on Self-healing Materials. Noordwijk aan Zee, The Netherlands, pp 1–8
Google Scholar
Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397. https://doi.org/10.1016/j.fm.2003.10.005
Article
CAS
Google Scholar
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110
Article
PubMed
CAS
Google Scholar
Li H, Xiao HG, Ou JP (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 34:435–438. https://doi.org/10.1016/j.cemconres.2003.08.025
Article
CAS
Google Scholar
Melnyczuk JM, Soubantika P (2014) Synthesis and characterization of Iron oxide nanoparticles. In: Bououdina M, Davim P (eds) Handbook of research on nanoscience, nanotechnology, and advanced materials. IGI Global, Hershey, pp 89–107
Chapter
Google Scholar
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017a) The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem 62:231–240
Article
CAS
Google Scholar
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017b) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43:493–507. https://doi.org/10.1080/1040841X.2016.1267708
Article
CAS
Google Scholar
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017c) Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett:1–12
Rashad AM (2013) A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials—a short guide for civil engineer. Mater Des 52:143–157. https://doi.org/10.1016/j.matdes.2013.05.035
Article
CAS
Google Scholar
Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation. Chem Eng Commun 191:580–606
Article
CAS
Google Scholar
Scott JR, Barnett TC (2006) Surface proteins of gram-positive bacteria and how they get there. Annu Rev Microbiol 60:397–423. https://doi.org/10.1146/annurev.micro.60.080805.142256
Article
PubMed
CAS
Google Scholar
Seifan M, Samani AK, Burgess JJ, Berenjian A (2016a) The effectiveness of microbial crack treatment in self healing concrete. In: Berenjian A, Jafarizadeh-Malmiri H, Song Y (eds) High value processing technologies. Nova Science publishers, New York, pp 97–124
Google Scholar
Seifan M, Samani AK, Berenjian A (2016b) Induced calcium carbonate precipitation using Bacillus species. Appl Microbiol Biotechnol 100:9895–9906. https://doi.org/10.1007/s00253-016-7701-7
Article
PubMed
CAS
Google Scholar
Seifan M, Samani AK, Berenjian A (2016c) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100:2591–2602. https://doi.org/10.1007/s00253-016-7316-z
Article
PubMed
CAS
Google Scholar
Seifan M, Samani AK, Hewitt S, Berenjian A (2017a) The effect of cell immobilization by calcium alginate on bacterially induced calcium carbonate precipitation. Fermentation 3:57. https://doi.org/10.3390/fermentation3040057
Article
Google Scholar
Seifan M, Samani AK, Berenjian A (2017b) New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl Microbiol Biotechnol 101:3131–3142. https://doi.org/10.1007/s00253-017-8109-8
Article
PubMed
CAS
Google Scholar
Seifan M, Samani AK, Berenjian A (2017c) A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatalysis and Agricultural Biotechnology 12:299–307. https://doi.org/10.1016/j.bcab.2017.10.021
Article
Google Scholar
Seifan M, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2018a) Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl Microbiol Biotechnol 102:175–184. https://doi.org/10.1007/s00253-017-8611-z
Article
PubMed
CAS
Google Scholar
Seifan M, Sarmah AK, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2018b) Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles. Appl Microbiol Biotechnol 102:2167–2178. https://doi.org/10.1007/s00253-018-8782-2
Article
PubMed
CAS
Google Scholar
Sierra-Beltran MG, Jonkers HM, Schlangen E (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater 67:344–352. https://doi.org/10.1016/j.conbuildmat.2014.01.012
Article
Google Scholar
Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
Article
CAS
Google Scholar
Thao TDP, Johnson TJS, Tong QS, Dai PS (2009) Implementation of self-healing in concrete—proof of concept. IES J Part A Civil Struct Eng 2:116–125
Article
Google Scholar
Van Tittelboom K, De Belie N, Van Loo D, Jacobs P (2011) Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cem Concr Compos 33:497–505. https://doi.org/10.1016/j.cemconcomp.2011.01.004
Article
CAS
Google Scholar
Wang JY, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577. https://doi.org/10.1007/s10295-011-1037-1
Article
PubMed
CAS
Google Scholar
Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33:763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
Article
CAS
Google Scholar
Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. https://doi.org/10.1007/s11671-008-9174-9
Article
PubMed
PubMed Central
CAS
Google Scholar