Skip to main content
Log in

Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2018

This article has been updated

Abstract

Cyclodipeptide synthases (CDPSs) comprise normally 200–300 amino acid residues and are mainly found in bacteria. They hijack aminoacyl-tRNAs from the ribosomal machinery for cyclodipeptide formation. In this study, nine new CDPS genes from eight Streptomyces strains were cloned into pET28a vector and expressed in Escherichia coli. Structural elucidation of the isolated products led to the identification of one cyclo-l-Trp-l-Leu, two cyclo-l-Trp-l-Pro, and three cyclo-l-Trp-l-Trp synthases. Other three CDPSs produce cyclo-l-Trp-l-Ala or cyclo-l-Trp-l-Tyr as the major cyclodipeptide. Total product yields of 46 to 211 mg/L E. coli culture were obtained. Our findings represent rare examples of CDPS family derived from actinobacteria that form various tryptophan-containing cyclodipeptides. Furthermore, this study highlights the potential of the microbial machinery for tryptophan-containing cyclodipeptide biosynthesis and provides valid experimental basis for further combination of these CDPS genes with other modification genes in synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 16 May 2018

    The original version of this article contained mistake. After careful re-examination of the LC-MS data, the products of CDPSs “WP_031028810” and “BAU83478” should be cFL instead of cPY. We apologize for any inconvenience that this may have caused.

References

  • Alkhalaf LM, Ryan KS (2015) Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. Chem Biol 22:317–328

    Article  PubMed  CAS  Google Scholar 

  • Borthwick AD (2012) 2,5-diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716

    Article  PubMed  CAS  Google Scholar 

  • Brockmeyer K, Li S-M (2017) Mutations of residues in pocket P1 of a cyclodipeptide synthase strongly increase product formation. J Nat Prod 80:2917–2922

    Article  PubMed  CAS  Google Scholar 

  • Chu D, Peng C, Ding B, Liu F, Zhang F, Lin H, Li Z (2011) Biological active metabolite cyclo (L-Trp-L-Phe) produced by South China Sea sponge Holoxea sp. associated fungus Aspergillus versicolor strain TS08. Bioprocess Biosyst Eng 34:223–229

    Article  PubMed  CAS  Google Scholar 

  • Fan A, Winkelblech J, Li S-M (2015) Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Appl Microbiol Biotechnol 99:7399–7415

    Article  PubMed  CAS  Google Scholar 

  • Giessen TW, Marahiel MA (2014) The tRNA-dependent biosynthesis of modified cyclic dipeptides. Int J Mol Sci 15:14610–14631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giessen TW, von Tesmar AM, Marahiel MA (2013) A tRNA-dependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines. Biochemistry 52:4274–4283

    Article  PubMed  CAS  Google Scholar 

  • Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courcon M, Masson C, Dubois S, Lautru S, Lecoq A, Hashimoto S, Genet R, Pernodet JL (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5:414–420

    Article  PubMed  CAS  Google Scholar 

  • Grundmann A, Li S-M (2005) Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology 151:2199–2207

    Article  PubMed  CAS  Google Scholar 

  • He F, Bao J, Zhang XY, Tu ZC, Shi YM, Qi SH (2013) Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J Nat Prod 76:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Zhou X, Xu T, Yang X, Liu Y (2010) Diketopiperazines from marine organisms. Chem Biodivers 7:2809–2829

    Article  PubMed  CAS  Google Scholar 

  • Jacques IB, Moutiez M, Witwinowski J, Darbon E, Martel C, Seguin J, Favry E, Thai R, Lecoq A, Dubois S, Pernodet JL, Gondry M, Belin P (2015) Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity. Nat Chem Biol 11:721–727

    Article  PubMed  CAS  Google Scholar 

  • James ED, Knuckley B, Alqahtani N, Porwal S, Ban J, Karty JA, Viswanathan R, Lane AL (2015) Two distinct cyclodipeptide synthases from a marine actinomycete catalyze biosynthesis of the same diketopiperazine natural product. ACS Synth Biol 5:547–553

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kumar SN, Mohandas C, Nambisan B (2014) Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosteroni associated with a rhabditid entomopathogenic nematode against major human-pathogenic bacteria. Peptides 53:48–58

    Article  PubMed  CAS  Google Scholar 

  • Li S-M (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78

    Article  PubMed  Google Scholar 

  • Lu C, Xie F, Shan C, Shen Y (2017) Two novel cyclic hexapeptides from the genetically engineered Actinosynnema pretiosum. Appl Microbiol Biotechnol 101:2273–2279

    Article  PubMed  CAS  Google Scholar 

  • Maiya S, Grundmann A, Li S-M, Turner G (2006) The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 7:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Moutiez M, Belin P, Gondry M (2017) Aminoacyl-tRNA-utilizing enzymes in natural product biosynthesis. Chem Rev 117:5578–5618

    Article  PubMed  CAS  Google Scholar 

  • Moutiez M, Schmitt E, Seguin J, Thai R, Favry E, Belin P, Mechulam Y, Gondry M (2014a) Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases. Nat Commun 5:5141

    Article  PubMed  CAS  Google Scholar 

  • Moutiez M, Seguin J, Fonvielle M, Belin P, Jacques IB, Favry E, Arthur M, Gondry M (2014b) Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei. Nucleic Acids Res 42:7247–7258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  • Seguin J, Moutiez M, Li Y, Belin P, Lecoq A, Fonvielle M, Charbonnier JB, Pernodet JL, Gondry M (2011) Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of Nematostella. Chem Biol 18:1362–1368

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT (2014) Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids. ACS Chem Biol 9:2718–2728

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT (2016) Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 33:127–135

    Article  PubMed  CAS  Google Scholar 

  • Winkelblech J, Fan A, Li S-M (2015) Prenyltransferases as key enzymes in primary and secondary metabolism. Appl Microbiol Biotechnol 99:7379–7397

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth V, Kindinger F, Xie X, Wang BG, Li S-M (2017) Two prenyltransferases govern a consecutive prenylation cascade in the biosynthesis of echinulin and neoechinulin. Org Lett 19:5928–5931

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat Prod Rep 31:1474–1487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank ARS Culture Collection (NRRL) for providing Streptomyces strains, S. Newel, and R. Kraut (University Marburg) for taking NMR and MS spectra.

Funding

The Bruker micrOTOF QIII mass spectrometer was financially supported in part by a grant from the Deutsche Forschungsgemeinschaft (INST 160/620-1 to S.-M. L.). J.L. and H.Y are scholarship recipients of China Scholarship Council (201608310118 and 201306220024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yu, H. & Li, SM. Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains. Appl Microbiol Biotechnol 102, 4435–4444 (2018). https://doi.org/10.1007/s00253-018-8908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8908-6

Keywords

Navigation