Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 4183–4191 | Cite as

Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts

  • Ning Zhang
  • Yuxuan Fan
  • Chen Li
  • Qiming Wang
  • Noppol Leksawasdi
  • Fuli Li
  • Shi’an Wang
Methods and protocols
  • 346 Downloads

Abstract

Non-model yeasts within basidiomycetes have considerable importance in agriculture, industry, and environment, but they are not as well studied as ascomycetous yeasts. Serving as a basic technique, nuclear DNA staining is widely used in physiology, ecology, cell biology, and genetics. However, it is unclear whether the classical nuclear DNA staining method for ascomycetous yeasts is applicable to basidiomycetous yeasts. In this study, 5 yeasts ineffectively stained by the classical propidium iodide (PI) staining method were identified from 23 representative basidiomycetous yeasts. Pretreatment of cells using dimethyl sulfoxide (DMSO) or snailase markedly improved cell penetration to PI and thus enabled DNA content determination by flow cytometry on the recalcitrant yeasts. The pretreatments are efficient, simple, and fast, avoiding tedious mutagenesis or genetic engineering used in previous reports. The heterogeneity of cell penetration to PI among basidiomycetous yeasts was attributed to the discrepancy in cell wall polysaccharides instead of capsule or plasma membrane. This study also indicated that care must be taken in attributing PI-negative staining as viable cells when studying non-model microorganisms.

Keywords

Basidiomycetous yeast Cell permeability Cell wall Dimethyl sulfoxide DNA staining 

Notes

Acknowledgments

We thank the Natural Science Foundation of China and the Chinese Academy of Sciences for financial support.

Funding

This study was funded by the Natural Science Foundation of China (No. 31670054, No. 51561145015, and No. 21676159) and Youth Innovation Promotion Association (2013137), Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8906_MOESM1_ESM.pdf (554 kb)
ESM 1 (PDF 553 kb)

References

  1. Atale N, Gupta S, Yadav UC, Rani V (2014) Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microsc 255(1):7–19CrossRefPubMedGoogle Scholar
  2. Bang KH, Lee DW, Park HM, Rhee YH (2000) Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci Biotechnol Biochem 64(5):1061–1063CrossRefPubMedGoogle Scholar
  3. Biely P, Krátký Z, Kovarík J, Bauer S (1971) Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J Bacteriol 107(1):121–129PubMedPubMedCentralGoogle Scholar
  4. Bonasio R (2015) The expanding epigenetic landscape of non-model organisms. J Exp Biol 218(Pt 1):114–122CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borgel D, van den Berg M, Huller T, Andrea H, Liebisch G, Boles E, Schorsch C, van der Pol R, Arink A, Boogers I, van der Hoeven R, Korevaar K, Farwick M, Köhler T, Schaffer S (2012) Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Metab Eng 14(4):412–426CrossRefPubMedGoogle Scholar
  6. Burke D, Dawson D, Stearns T (2000) Flow cytometry of yeast DNA. In: Methods in yeast genetics. A Cold Spring Harbor laboratory course manual. Laboratory Press, Cold Spring Harbor, NY, pp 155–156Google Scholar
  7. Carlson CR, Grallert B, Bernander R, Stokke T, Boye E (1997) Measurement of nuclear DNA content in fission yeast by flow cytometry. Yeast 13(14):1329–1335CrossRefPubMedGoogle Scholar
  8. Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R (2016) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7(124):642PubMedPubMedCentralGoogle Scholar
  9. Danielsen HE, Pradhan M, Novelli M (2016) Revisiting tumour aneuploidy—the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13(5):291–304CrossRefPubMedGoogle Scholar
  10. Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13(1):163–171CrossRefPubMedGoogle Scholar
  11. Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14(2):147–160CrossRefPubMedGoogle Scholar
  12. Doering TL (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 63(1):223–247CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elsheikha HM, Mansfield LS (2004) Assessment of Sarcocystis neurona sporocyst viability and differentiation between viable and nonviable sporocysts using propidium iodide stain. J Parasitol 90(4):872–875CrossRefPubMedGoogle Scholar
  14. Fernandez-Miranda E, Majada J, Casares A (2017) Efficacy of propidium iodide and FUN-1 stains for assessing viability in basidiospores of Rhizopogon roseolus. Mycologia 109:350–358CrossRefPubMedGoogle Scholar
  15. Flores ML, Stortz CA, Cerezo AS (2000) Studies on the skeletal cell wall of the cystocarpic stage of the red seaweed Iridaea undulosa B. Part II Fractionation of the cell wall and methylation analysis of the inner core-fibrillar polysaccharides. Inter J Bio Macromol 27(1):21–27CrossRefGoogle Scholar
  16. Gh MS, Wilhelm MJ, Sheffield JB, Dai HL (2015) Living E. coli is permeable to propidium iodide: a study by time-resolved second-harmonic scattering and fluorescence microscopy. Biophys J 108(2):148a–149aGoogle Scholar
  17. Ghajar BM, Harmon SA (1968) Effect of dimethyl sulfoxide (DMSO) on permeability of Staphylococcus aureus. Biochem Biophys Res Commun 32(6):940–944CrossRefPubMedGoogle Scholar
  18. Gilbert MF, McQuitty DN, Bailey JE (1978) Flow microfluorometry study of diauxic batch growth of Saccharomyces cerevisiae. Appl Environ Microbiol 36(4):615–617PubMedPubMedCentralGoogle Scholar
  19. Johnson EA (2013a) Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Appl Microbiol Biotechnol 97(2):503–517CrossRefPubMedGoogle Scholar
  20. Johnson EA (2013b) Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 97(2):7563–7577CrossRefPubMedGoogle Scholar
  21. Johnson EA, Villa TG, Lewis MJ (1980) Phaffia rhodozyma as an astaxanthin source in salmonid diets. Aquaculture 20(2):123–134CrossRefGoogle Scholar
  22. Khan MMT, Pyle BH, Camper AK (2010) Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry. Appl Environ Microbiol 76(15):5088–5096CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kratky Z, Biely P, Bauer S (1975) Mechanism of 2-deoxy-D-glucose inhibition of cell-wall polysaccharide and glycoprotein biosyntheses in Saccharomyces cerevisiae. Eur J Biochem 54(2):459–467CrossRefPubMedGoogle Scholar
  24. Kucsera J, Pfeiffer I, Ferenczy L (1998) Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie Van Leeuwenhoek 73(2):163–168CrossRefPubMedGoogle Scholar
  25. Liu L, Redden H, Alper HS (2013) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24(6):1023–1030CrossRefPubMedGoogle Scholar
  26. Liu XZ, Wang QM, Goker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147CrossRefPubMedGoogle Scholar
  27. Lopez-Amoros R, Castel S, Comas-Riu Vives-Rego J (1997) Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. Cytometry 29(4):298–305CrossRefPubMedGoogle Scholar
  28. Maekawa E (1974) Effect of dimethyl-sulfoxide as solvent of cell-wall polysaccharides. J Agr Chem Soc Jpn 48(1):75–77Google Scholar
  29. Masneuf-Pomarede I, Bely M, Marullo P, Albertin W (2015) The genetics of non-conventional wine yeasts: current knowledge and future challenges. Front Microbiol 6:1563PubMedGoogle Scholar
  30. Medwid RD (1998) Phaffia rhodozyma is polyploid. J Ind Microbiol Biot 21(4–5):228–232CrossRefGoogle Scholar
  31. Notman R, den Otter WK, Noro MG, Brels WJ, Anwar J (2007) The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophys J 93(6):2056–2068CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ohno N, Uchiyama M, Tsuzuki A, Miura NN, Adachi Y, Aizawa MW, Tamura H, Tanaka S, Yadomae T (1999) Solubilization of yeast cell-wall β-(1, 3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr Res 316(1–4):161–172CrossRefPubMedGoogle Scholar
  33. Olaiya AF, Sogin SJ (1979) Ploidy determination of Candida albicans. J Bacteriol 140(3):1043–1049PubMedPubMedCentralGoogle Scholar
  34. Phe MH, Dossot M, Guilloteau H, Block JC (2007) Highly chlorinated Escherichia coli cannot be stained by propidium iodide. Can J Microbiol 53(5):664–670CrossRefPubMedGoogle Scholar
  35. Polak E, Hermann R, Kües U, Aebi M (1997) Asexual sporulation in Coprinus cinereus: structure and development of oidiophores and oidia in an Amut Bmut homokaryon. Fungal Genet Biol 22:112–126CrossRefPubMedGoogle Scholar
  36. Rosebrock AP (2017) Analysis of the budding yeast cell cycle by flow cytometry. Cold Spring Harb Protoc 2017:pdb.prot088740.  https://doi.org/10.1101/pdb.prot088740 CrossRefPubMedGoogle Scholar
  37. Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A (2017) Non-model model organisms. BMC Biol 15(1):55CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schupp DG, Erlandsen SL (1987) A new method to determine Giardia cyst viability: correlation of fluorescein diacetate and propidium iodide staining with animal infectivity. Appl Environ Microbiol 53(4):704–707PubMedPubMedCentralGoogle Scholar
  39. Sharma R, Gassel S, Steiger S, Xia X, Bauer R, Sandmann G, Thines M (2015) The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina. BMC Genomics 16(1):233CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, Ali I, Siddiqi WA, Hun LT (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112:116–131CrossRefPubMedGoogle Scholar
  41. Takeo K, Tanaka R, Miyaji M, Nishimura K (1995) Unbudded G2 as well as G1 arrest in the stationary phase of the basidiomycetous yeast Cryptococcus neoformans. FEMS Microbiol Lett 129:231–235PubMedGoogle Scholar
  42. Tibayrenc P, Ghommidh C, Preziosi-Belloy L (2011) Determination of yeast viability during a stress-model alcoholic fermentation using reagent-free microscopy image analysis. Biotechnol Prog 27(2):539–546CrossRefPubMedGoogle Scholar
  43. Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136CrossRefPubMedGoogle Scholar
  44. Wang ZG, Akiyama T, Yokoyama T, Matsumoto Y (2013) Fractionation and characterization of wood cell wall components of Fagus crenata Blume using LiCl/DMSO solvent system. J Wood Chem Technol 33(3):188–196CrossRefGoogle Scholar
  45. Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015a) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang QM, Yurkov AM, Goker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189CrossRefPubMedGoogle Scholar
  47. Wery J, Verdoes JC, van Ooyen AJJ (1998) Efficient transformation of the astaxanthin-producing yeast Phaffia rhodozyma. Biotechnol Tech 12(5):399–405CrossRefGoogle Scholar
  48. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618CrossRefPubMedGoogle Scholar
  49. Williams AC, Barry BW (2012) Penetration enhancers. Adv Drug Deliv Rev 64:128–137CrossRefGoogle Scholar
  50. Williams SC, Hong Y, Danavall DCA, Howard-Jones MH, Gibson D, Frischer ME, Verity PG (1998) Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J Microbiol Meth 32(3):225–236CrossRefGoogle Scholar
  51. Wright R (2000) Transmission electron microscopy of yeast. Microsc Res Techniq 51(6):496–510CrossRefGoogle Scholar
  52. Zaragoza O, Casadevall A (2004) Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 6(1):10–15CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zeng FY, Gong XY, Hamid MI, Fu YP, Xie JT, Cheng JS, Li GQ, Jiang DH (2012) A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet Biol 49:347–357CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  4. 4.Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  5. 5.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  6. 6.School of Agro-IndustryChiang Mai UniversityChiang MaiThailand

Personalised recommendations