Abstract
The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.
This is a preview of subscription content, access via your institution.









References
Abro R (2014) Digestion and metabolism of carbohydrates in fish. Swedish University of Agricultural Sciences, Uppsala, Sweden, Dissertation
Alcaide E, Herraiz S, Esteve C (2006) Occurrence of Edwardsiella tarda in wild European eels Anguilla anguilla from Mediterranean Spain. Dis Aquat Org 73(1):77–81. https://doi.org/10.3354/dao073077
Angelidis P, Pournara I, Photis G (2005) Glass eels (Anguilla anguilla) growth in a recirculating system. Medit Mar Sci 6(1):99–106. https://doi.org/10.12681/mms.196
Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, Koci MD (2016) Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci 3:2. https://doi.org/10.3389/fvets.2016.00002
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107(44):18933–18938. https://doi.org/10.1073/pnas.1007028107
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, Caporaso JG, Svanbäck R (2014) Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 17(8):979–987. https://doi.org/10.1111/ele.12301
Brüssow H, Parkinson SJ (2014) You are what you eat. Nat Biotechnol 32(3):243–245. https://doi.org/10.1038/nbt.2845
Bradley RL, Shipley B, Beaulieu C (2006) Refining numerical approaches for analyzing soil microbial community catabolic profiles based on carbon source utilization patterns. Soil Biol Biochem 38(3):629–632. https://doi.org/10.1016/j.soilbio.2005.07.002
Cai MY, Dong XZ, Lu YY, Xie JY, Liu XL (2001) Identification methods of common bacteria. In: Dong XZ, Cai MY (eds) Handbook of common bacteria systematic identify, 1st edn. Science press, Beijing, pp 349–398
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303
Chen Z, Wang XK, Yao FF, Zheng FX, Feng ZZ (2010) Elevated ozone changed soil microbial community in a rice paddy. Soil Sci Soc Am J 74(3):829–837. https://doi.org/10.2136/sssaj2009.0258
Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 23(8):1891–1898. https://doi.org/10.1111/mec.12699
Clements KD, Raubenheimer D (2006) Feeding and nutrition. In: Evans DH (ed) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, FL, pp 47–82
Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23(1):79–92. https://doi.org/10.1111/j.1365-2435.2008.01524.x
Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K (2013) Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 73(19):5905–5913. https://doi.org/10.1158/0008-5472.CAN-13-1511
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Enes P, Panserat S, Kaushi S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) juveniles. Rev Fish Sci 19(3):201–215. https://doi.org/10.1080/10641262.2011.579363
Esakkiraj P, Immanuel G, Sowmya SM, Iyapparaj P, Palavesam A (2009) Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess Tech 2(4):383–390. https://doi.org/10.1007/s11947-007-0046-6
Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589. https://doi.org/10.1038/nrgastro.2012.156
Gajardo K, Rodiles A, Kortner TM, Krogdahl A, Bakke AM, Merrifield DL, Sorum H (2016) A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep 6:30893. https://doi.org/10.1038/srep30893
Ingerslev HC, Jørgensen LVG, Strube ML, Larsen N, Dalsgaard I, Boye M, Madsen L (2014) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture s424–425(2):24–34. doi: https://doi.org/10.1016/j.aquaculture.2013.12.032
Karipoglou C, Nathanailides C (2009) Growth rate and feed conversion efficiency of intensively cultivated European eel (Anguilla anguilla L.) Int J Fish Aquac 1(1):11–13 https://www.researchgate.net/publication/228663916 Accessed 11 may 2009
Krogdahl Å, Hemre G-I, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11(2):103–122. https://doi.org/10.1111/j.1365-2095.2004.00327.x
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
Lødemel JB, Mayhew TM, Myklebust R, Olsen RE, Espelid S, Ringo E (2001) Effect of three dietary oils on disease susceptibility in Arctic charr (Salvelinus alpinus L.) during cohabitant challenge with Aeromonas salmonicida ssp. salmonicida. Aquac Res 32(12):935–945. https://doi.org/10.1046/j.1365-2109.2001.00621.x
Langille MG, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116(6):1396–1404. https://doi.org/10.1111/jam.12475
Li J, Liu W, Luo L, Dong D, Liu T, Zhang T, Lu C, Liu D, Zhang D, Wu H (2015) Expression of Paenibacillus polymyxa β-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biol Control 90(12):141–147. https://doi.org/10.1016/j.biocontrol.2015.06.008
Li X, Zhou L, Yu Y, Ni J, Xu W, Yan Q (2017) Composition of gut microbiota in the Gibel carp (Carassius auratus gibelio) varies with host development. Microb Ecol 74(1):239–249. https://doi.org/10.1007/s00248-016-0924-4
Liang J, Lin M, Chen Z, Ding Z, Gao D, Shao M (2014) Study on the microflora of cultured European eel (Anguilla anguilla) and the pond water. Geno Appl Biol 33(2):307–313. https://doi.org/10.13417/j.gab.033.000307
Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340. https://doi.org/10.1038/srep24340
Luzzana U, Scolari M, Campo DOB, Caprino F, Turchini G, Orban E, Sinesio F, Valfrè F (2010) Growth and product quality of European eel (Anguilla anguilla) as affected by dietary protein and lipid sources. J Appl Ichthyol 19(2):74–78. https://doi.org/10.1046/j.1439-0426.2003.00441.x
Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17(1):10–12. https://doi.org/10.14806/ej.17.1.200
Mokoginta I, Takeuchi T, Hadadi A, Dedi J (2004) Different capabilities in utilizing dietary carbohydrate by fingerling and subadult giant gouramy Osphronemus gouramy. Fisheries Sci 70(6):996–1002. https://doi.org/10.1111/j.1444-2906.2004.00899.x
Mondal S, Roy T, Sen SK, Ray AK (2008) Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyol Piscat 38(1):1–8. https://doi.org/10.3750/AIP2008.38.1.01
Ni J, Yan Q, Yu Y, Zhang T (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87(3):704–714. https://doi.org/10.1111/1574-6941.12256
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology R package, v2.0-10. J Stat Soft 48(9):1–21 https://CRAN.R-project.org/package=vegan
Pen-Hsing T, Shi-Yen S (1993) Carbohydrate utilization versus body size in tilapia Oreochromis niloticus×O. aureus. Comp Biochem Physiol 104(3):585–588. https://doi.org/10.1016/0300-9629(93)90468-J
Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Microbiol Ecol 42(1):1–14. https://doi.org/10.1111/j.1574-6941.2002.tb00990.x
Rapp P, Backhaus S (1992) Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria. Enzyme Microb Tech 14(11):938–943. https://doi.org/10.1016/0141-0229(92)90059-W
Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101(13):4596–4601. https://doi.org/10.1073/pnas.0400706101
Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18(5):465–492. https://doi.org/10.1111/j.1365-2095.2012.00943.x
Renshaw MA, Olds BP, Jerde CL, Mcveigh MM, Lodge DM (2015) The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol Ecol Resour 15(1):168–176. https://doi.org/10.1111/1755-0998.12281
Rodríguez-Viera L, Perera E, Martos-Sitcha JA, Perdomo-Morales R, Casuso A, Montero-Alejo V, García-Galan T, Martínez-Rodríguez G, Mancera JM (2016) Molecular, biochemical, and dietary regulation features of α-amylase in a carnivorous crustacean, the spiny lobster Panulirus argus. PLoS One 11(7):e0158919. https://doi.org/10.1371/journal.pone.0158919
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608. https://doi.org/10.1038/ismej.2011.38
Rogers BF, Iii RLT (2001) Temporal analysis of the soil microbial community along a toposequence in pineland soils. Soil Biol Biochem 33(10):1389–1401. https://doi.org/10.1016/S0038-0717(01)00044-X
Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB (2014) Recovery of the gut microbiome following fecal microbiota transplantation. mBio 5(3):e00893-14. https://doi.org/10.1128/mBio.00893-14
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09
Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864. https://doi.org/10.1093/bioinformatics/btr026
Schutter M, Dick R (2001) Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem 33(11):1481–1491. https://doi.org/10.1016/S0038-0717(01)00057-8
Suárez MD, Sanz A, Bazoco J, García-Gallego M (2002) Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss). Aquacult Int 10(2):143–156. https://doi.org/10.1023/A:1021371104839
Tarayre C, Bauwens J, Mattéotti C, Brasseur C, Millet C, Massart S, Destain J, Vandenbol M, Pauw ED, Haubruge E, Francis F, Thonart P, Portetelle D, Delvigne F (2015) Multiple analyses of microbial communities applied to the gut of the wood-feeding termite Reticulitermes flavipes, fed on artificial diets. Symbiosis 65(3):143–155. https://doi.org/10.1007/s13199-015-0328-0
Tian B, Fadhil NH, Powell JE, Kwong WK, Moran NA (2012) Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. mBio 3(6):e00377-12. https://doi.org/10.1128/mBio.00377-12
Wang AR, Ran C, Ringø E, Zhou ZG (2017) Progress in fish gastrointestinal microbiota research. Rev Aquacult 0:1–15. https://doi.org/10.1111/raq.12191
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) Gplots: various R programming tools for plotting data. https://CRAN.R-project.org/package=gplots
Wong S, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21(13):3100–3102. https://doi.org/10.1111/j.1365-294X.2012.05646.x
Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF, Good C (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microb 79(16):4974–4984. https://doi.org/10.1128/AEM.00924-13
Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7(2):e30440. https://doi.org/10.1371/journal.pone.0030440
Yang YX, Dai ZL, Zhu WY (2014) Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46(11):2489–2501. https://doi.org/10.1007/s00726-014-1807-y
Ye L, Shao MF, Zhang T, Tong AH, Lok S (2011) Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing. Water Res 45(15):4390–4398. https://doi.org/10.1016/j.watres.2011.05.028
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755
Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26(9):1101–1108. https://doi.org/10.1016/0038-0717(94)90131-7
Zhang H, Li G, Song X, Yang D, Li Y, Qiao J, Zhang J, Zhao S (2013) Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land. Acta Ecol Sin 33(1):38–44. https://doi.org/10.1016/j.chnaes.2012.12.006
Zhang ML, Du ZY (2016) Review and perspective:function of intestinal microbiota in aquatic animals. J EastChina Norm Univ Natur Sci 1:1–8. https://doi.org/10.3969/j.issn.1000
Acknowledgements
This work was supported by grants from the Department of Science and Technology of Fujian Province (Nos. 2014 J01111 and 2017 J01625), the National Natural Science Foundation of China (No. 31670125), the Innovation Program of Fujian Academy of Agricultural Sciences (No. 2016PI-18), and the Special Scientific Research Funds for Public Scientific Research Institution of Fujian (No. 2015R1025-8).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The described field studies were permitted by the eel farm. The field studies did not involve endangered or protected species. This study has been reviewed and approved by the ethics committee of the Institute of Hydrobiology, Fujian Academy of Agricultural Sciences.
Electronic supplementary material
ESM 1
(PDF 223 kb)
Rights and permissions
About this article
Cite this article
Huang, W., Cheng, Z., Lei, S. et al. Community composition, diversity, and metabolism of intestinal microbiota in cultivated European eel (Anguilla anguilla). Appl Microbiol Biotechnol 102, 4143–4157 (2018). https://doi.org/10.1007/s00253-018-8885-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-018-8885-9
Keywords
- Cultivated European eel
- Intestinal microbiome
- Community composition
- Metabolic potential
- Fish health and nutrients