Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 4143–4157 | Cite as

Community composition, diversity, and metabolism of intestinal microbiota in cultivated European eel (Anguilla anguilla)

  • Wei Huang
  • Zhiqiang Cheng
  • Shaonan Lei
  • Lanying Liu
  • Xin Lv
  • Lihua Chen
  • Miaohong Wu
  • Chao Wang
  • Baoyu Tian
  • Yongkang Song
Genomics, transcriptomics, proteomics

Abstract

The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.

Keywords

Cultivated European eel Intestinal microbiome Community composition Metabolic potential Fish health and nutrients 

Notes

Acknowledgements

This work was supported by grants from the Department of Science and Technology of Fujian Province (Nos. 2014 J01111 and 2017 J01625), the National Natural Science Foundation of China (No. 31670125), the Innovation Program of Fujian Academy of Agricultural Sciences (No. 2016PI-18), and the Special Scientific Research Funds for Public Scientific Research Institution of Fujian (No. 2015R1025-8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The described field studies were permitted by the eel farm. The field studies did not involve endangered or protected species. This study has been reviewed and approved by the ethics committee of the Institute of Hydrobiology, Fujian Academy of Agricultural Sciences.

Supplementary material

253_2018_8885_MOESM1_ESM.pdf (223 kb)
ESM 1 (PDF 223 kb)

References

  1. Abro R (2014) Digestion and metabolism of carbohydrates in fish. Swedish University of Agricultural Sciences, Uppsala, Sweden, DissertationGoogle Scholar
  2. Alcaide E, Herraiz S, Esteve C (2006) Occurrence of Edwardsiella tarda in wild European eels Anguilla anguilla from Mediterranean Spain. Dis Aquat Org 73(1):77–81.  https://doi.org/10.3354/dao073077 CrossRefPubMedGoogle Scholar
  3. Angelidis P, Pournara I, Photis G (2005) Glass eels (Anguilla anguilla) growth in a recirculating system. Medit Mar Sci 6(1):99–106.  https://doi.org/10.12681/mms.196 CrossRefGoogle Scholar
  4. Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, Koci MD (2016) Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci 3:2.  https://doi.org/10.3389/fvets.2016.00002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107(44):18933–18938.  https://doi.org/10.1073/pnas.1007028107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, Caporaso JG, Svanbäck R (2014) Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 17(8):979–987.  https://doi.org/10.1111/ele.12301 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brüssow H, Parkinson SJ (2014) You are what you eat. Nat Biotechnol 32(3):243–245.  https://doi.org/10.1038/nbt.2845 CrossRefPubMedGoogle Scholar
  8. Bradley RL, Shipley B, Beaulieu C (2006) Refining numerical approaches for analyzing soil microbial community catabolic profiles based on carbon source utilization patterns. Soil Biol Biochem 38(3):629–632.  https://doi.org/10.1016/j.soilbio.2005.07.002 CrossRefGoogle Scholar
  9. Cai MY, Dong XZ, Lu YY, Xie JY, Liu XL (2001) Identification methods of common bacteria. In: Dong XZ, Cai MY (eds) Handbook of common bacteria systematic identify, 1st edn. Science press, Beijing, pp 349–398Google Scholar
  10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen Z, Wang XK, Yao FF, Zheng FX, Feng ZZ (2010) Elevated ozone changed soil microbial community in a rice paddy. Soil Sci Soc Am J 74(3):829–837.  https://doi.org/10.2136/sssaj2009.0258 CrossRefGoogle Scholar
  12. Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 23(8):1891–1898.  https://doi.org/10.1111/mec.12699 CrossRefPubMedGoogle Scholar
  13. Clements KD, Raubenheimer D (2006) Feeding and nutrition. In: Evans DH (ed) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, FL, pp 47–82Google Scholar
  14. Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23(1):79–92.  https://doi.org/10.1111/j.1365-2435.2008.01524.x CrossRefGoogle Scholar
  15. Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K (2013) Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 73(19):5905–5913.  https://doi.org/10.1158/0008-5472.CAN-13-1511 CrossRefPubMedPubMedCentralGoogle Scholar
  16. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72(7):5069–5072.  https://doi.org/10.1128/AEM.03006-05 CrossRefGoogle Scholar
  17. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  18. Enes P, Panserat S, Kaushi S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) juveniles. Rev Fish Sci 19(3):201–215.  https://doi.org/10.1080/10641262.2011.579363 CrossRefGoogle Scholar
  19. Esakkiraj P, Immanuel G, Sowmya SM, Iyapparaj P, Palavesam A (2009) Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess Tech 2(4):383–390.  https://doi.org/10.1007/s11947-007-0046-6 CrossRefGoogle Scholar
  20. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589.  https://doi.org/10.1038/nrgastro.2012.156 CrossRefPubMedGoogle Scholar
  21. Gajardo K, Rodiles A, Kortner TM, Krogdahl A, Bakke AM, Merrifield DL, Sorum H (2016) A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep 6:30893.  https://doi.org/10.1038/srep30893 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ingerslev HC, Jørgensen LVG, Strube ML, Larsen N, Dalsgaard I, Boye M, Madsen L (2014) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture s424–425(2):24–34. doi:  https://doi.org/10.1016/j.aquaculture.2013.12.032
  23. Karipoglou C, Nathanailides C (2009) Growth rate and feed conversion efficiency of intensively cultivated European eel (Anguilla anguilla L.) Int J Fish Aquac 1(1):11–13 https://www.researchgate.net/publication/228663916 Accessed 11 may 2009Google Scholar
  24. Krogdahl Å, Hemre G-I, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11(2):103–122.  https://doi.org/10.1111/j.1365-2095.2004.00327.x CrossRefGoogle Scholar
  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  26. Lødemel JB, Mayhew TM, Myklebust R, Olsen RE, Espelid S, Ringo E (2001) Effect of three dietary oils on disease susceptibility in Arctic charr (Salvelinus alpinus L.) during cohabitant challenge with Aeromonas salmonicida ssp. salmonicida. Aquac Res 32(12):935–945.  https://doi.org/10.1046/j.1365-2109.2001.00621.x CrossRefGoogle Scholar
  27. Langille MG, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821.  https://doi.org/10.1038/nbt.2676 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  29. Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116(6):1396–1404.  https://doi.org/10.1111/jam.12475 CrossRefPubMedGoogle Scholar
  30. Li J, Liu W, Luo L, Dong D, Liu T, Zhang T, Lu C, Liu D, Zhang D, Wu H (2015) Expression of Paenibacillus polymyxa β-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biol Control 90(12):141–147.  https://doi.org/10.1016/j.biocontrol.2015.06.008 CrossRefGoogle Scholar
  31. Li X, Zhou L, Yu Y, Ni J, Xu W, Yan Q (2017) Composition of gut microbiota in the Gibel carp (Carassius auratus gibelio) varies with host development. Microb Ecol 74(1):239–249.  https://doi.org/10.1007/s00248-016-0924-4 CrossRefPubMedGoogle Scholar
  32. Liang J, Lin M, Chen Z, Ding Z, Gao D, Shao M (2014) Study on the microflora of cultured European eel (Anguilla anguilla) and the pond water. Geno Appl Biol 33(2):307–313.  https://doi.org/10.13417/j.gab.033.000307 Google Scholar
  33. Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340.  https://doi.org/10.1038/srep24340 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Luzzana U, Scolari M, Campo DOB, Caprino F, Turchini G, Orban E, Sinesio F, Valfrè F (2010) Growth and product quality of European eel (Anguilla anguilla) as affected by dietary protein and lipid sources. J Appl Ichthyol 19(2):74–78.  https://doi.org/10.1046/j.1439-0426.2003.00441.x CrossRefGoogle Scholar
  35. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17(1):10–12.  https://doi.org/10.14806/ej.17.1.200 CrossRefGoogle Scholar
  37. Mokoginta I, Takeuchi T, Hadadi A, Dedi J (2004) Different capabilities in utilizing dietary carbohydrate by fingerling and subadult giant gouramy Osphronemus gouramy. Fisheries Sci 70(6):996–1002.  https://doi.org/10.1111/j.1444-2906.2004.00899.x CrossRefGoogle Scholar
  38. Mondal S, Roy T, Sen SK, Ray AK (2008) Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyol Piscat 38(1):1–8.  https://doi.org/10.3750/AIP2008.38.1.01 CrossRefGoogle Scholar
  39. Ni J, Yan Q, Yu Y, Zhang T (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87(3):704–714.  https://doi.org/10.1111/1574-6941.12256 CrossRefPubMedGoogle Scholar
  40. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology R package, v2.0-10. J Stat Soft 48(9):1–21 https://CRAN.R-project.org/package=vegan Google Scholar
  41. Pen-Hsing T, Shi-Yen S (1993) Carbohydrate utilization versus body size in tilapia Oreochromis niloticus×O. aureus. Comp Biochem Physiol 104(3):585–588.  https://doi.org/10.1016/0300-9629(93)90468-J CrossRefGoogle Scholar
  42. Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Microbiol Ecol 42(1):1–14.  https://doi.org/10.1111/j.1574-6941.2002.tb00990.x PubMedGoogle Scholar
  43. Rapp P, Backhaus S (1992) Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria. Enzyme Microb Tech 14(11):938–943.  https://doi.org/10.1016/0141-0229(92)90059-W CrossRefGoogle Scholar
  44. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101(13):4596–4601.  https://doi.org/10.1073/pnas.0400706101 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18(5):465–492.  https://doi.org/10.1111/j.1365-2095.2012.00943.x CrossRefGoogle Scholar
  46. Renshaw MA, Olds BP, Jerde CL, Mcveigh MM, Lodge DM (2015) The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol Ecol Resour 15(1):168–176.  https://doi.org/10.1111/1755-0998.12281 CrossRefPubMedGoogle Scholar
  47. Rodríguez-Viera L, Perera E, Martos-Sitcha JA, Perdomo-Morales R, Casuso A, Montero-Alejo V, García-Galan T, Martínez-Rodríguez G, Mancera JM (2016) Molecular, biochemical, and dietary regulation features of α-amylase in a carnivorous crustacean, the spiny lobster Panulirus argus. PLoS One 11(7):e0158919.  https://doi.org/10.1371/journal.pone.0158919 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608.  https://doi.org/10.1038/ismej.2011.38 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rogers BF, Iii RLT (2001) Temporal analysis of the soil microbial community along a toposequence in pineland soils. Soil Biol Biochem 33(10):1389–1401.  https://doi.org/10.1016/S0038-0717(01)00044-X CrossRefGoogle Scholar
  50. Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB (2014) Recovery of the gut microbiome following fecal microbiota transplantation. mBio 5(3):e00893-14.  https://doi.org/10.1128/mBio.00893-14 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864.  https://doi.org/10.1093/bioinformatics/btr026 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schutter M, Dick R (2001) Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem 33(11):1481–1491.  https://doi.org/10.1016/S0038-0717(01)00057-8 CrossRefGoogle Scholar
  54. Suárez MD, Sanz A, Bazoco J, García-Gallego M (2002) Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss). Aquacult Int 10(2):143–156.  https://doi.org/10.1023/A:1021371104839 CrossRefGoogle Scholar
  55. Tarayre C, Bauwens J, Mattéotti C, Brasseur C, Millet C, Massart S, Destain J, Vandenbol M, Pauw ED, Haubruge E, Francis F, Thonart P, Portetelle D, Delvigne F (2015) Multiple analyses of microbial communities applied to the gut of the wood-feeding termite Reticulitermes flavipes, fed on artificial diets. Symbiosis 65(3):143–155.  https://doi.org/10.1007/s13199-015-0328-0 CrossRefGoogle Scholar
  56. Tian B, Fadhil NH, Powell JE, Kwong WK, Moran NA (2012) Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. mBio 3(6):e00377-12.  https://doi.org/10.1128/mBio.00377-12 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wang AR, Ran C, Ringø E, Zhou ZG (2017) Progress in fish gastrointestinal microbiota research. Rev Aquacult 0:1–15.  https://doi.org/10.1111/raq.12191 Google Scholar
  58. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) Gplots: various R programming tools for plotting data. https://CRAN.R-project.org/package=gplots
  59. Wong S, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21(13):3100–3102.  https://doi.org/10.1111/j.1365-294X.2012.05646.x CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF, Good C (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microb 79(16):4974–4984.  https://doi.org/10.1128/AEM.00924-13 CrossRefGoogle Scholar
  61. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7(2):e30440.  https://doi.org/10.1371/journal.pone.0030440 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yang YX, Dai ZL, Zhu WY (2014) Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46(11):2489–2501.  https://doi.org/10.1007/s00726-014-1807-y CrossRefPubMedGoogle Scholar
  63. Ye L, Shao MF, Zhang T, Tong AH, Lok S (2011) Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing. Water Res 45(15):4390–4398.  https://doi.org/10.1016/j.watres.2011.05.028 CrossRefPubMedGoogle Scholar
  64. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617.  https://doi.org/10.1099/ijsem.0.001755 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26(9):1101–1108.  https://doi.org/10.1016/0038-0717(94)90131-7 CrossRefGoogle Scholar
  66. Zhang H, Li G, Song X, Yang D, Li Y, Qiao J, Zhang J, Zhao S (2013) Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land. Acta Ecol Sin 33(1):38–44.  https://doi.org/10.1016/j.chnaes.2012.12.006 CrossRefGoogle Scholar
  67. Zhang ML, Du ZY (2016) Review and perspective:function of intestinal microbiota in aquatic animals. J EastChina Norm Univ Natur Sci 1:1–8.  https://doi.org/10.3969/j.issn.1000 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Agricultural Quality Standards and Testing Technology ResearchFujian Academy of Agricultural SciencesFuzhouChina
  2. 2.College of Life ScienceFujian Normal UniversityFuzhouChina

Personalised recommendations