Skip to main content

Bioactivity and biotechnological production of punicic acid

Abstract

Punicic acid (PuA; 18: 3Δ9cis,11trans,13cis) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig 2
Fig. 3
Fig. 4

References

  1. Abbasi H, Rezaei K, Rashidi L (2008) Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. J Am Oil Chem Soc 85:83–89. https://doi.org/10.1007/s11746-007-1158-x

    CAS  Article  Google Scholar 

  2. Albrecht M, Jiang W, Kumi-Diaka J, Lansky EP, Gommersall LM, Patel A, Mansel RE, Neeman I, Geldof AA, Campbell MJ (2004) Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells. J Med Food 7:274–283. https://doi.org/10.1089/jmf.2004.7.274

    CAS  PubMed  Article  Google Scholar 

  3. AlMatar M, Islam MR, Albari O, Var I, Köksal F (2017) Pomegranate as a possible treatment in reducing risk of developing wound healing, obesity, neurodegenerative disorders, and diabetes mellitus. Mini Rev Med Chem 17:1–20. https://doi.org/10.2174/1389557517666170419114722

    Google Scholar 

  4. Anusree SS, Priyanka A, Nisha VM, Das AA, Raghu KG (2014) An in vitro study reveals the nutraceutical potential of punicic acid relevant to diabetes via enhanced GLUT4 expression and adiponectin secretion. Food Funct 5:2590–2601. https://doi.org/10.1039/c4fo00302k

    CAS  PubMed  Article  Google Scholar 

  5. Anusree SS, Nisha VM, Priyanka A, Raghu KG (2015) Insulin resistance by TNF-α is associated with mitochondrial dysfunction in 3T3-L1 adipocytes and is ameliorated by punicic acid, a PPARγ agonist. Mol Cell Endocrinol 413:120–128. https://doi.org/10.1016/j.mce.2015.06.018

    CAS  PubMed  Article  Google Scholar 

  6. Anusree SS, Sindhu G, Preetha Rani MR, Raghu FG (2017) Insulin resistance in 3T3-L1 adipocytes by TNF-alpha is improved by punicic acid through upregulation of insulin signalling pathway and endocrine function, and downregulation of proinflammatory cytokines. Biochimie 146:79–86. https://doi.org/10.1016/j.biochi.2017.11.014

    PubMed  Article  CAS  Google Scholar 

  7. Arao K, Wang YM, Inoue N, Hirata J, Cha JY, Nagao K, Yanagita T (2004) Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis 3:24. https://doi.org/10.1186/1476-511X-3-24

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Aruna P, Venkataramanamma D, Singh AK, Singh R (2016) Health benefits of punicic acid: a review. Compr Rev Food Sci Food Saf 15:16–27. https://doi.org/10.1111/1541-4337.12171

    CAS  Article  Google Scholar 

  9. Badami RC, Patil KB (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19:119–153. https://doi.org/10.1016/0163-7827(80)90002-8

    CAS  PubMed  Article  Google Scholar 

  10. Banihani S, Swedan S, Alguraan Z (2013) Pomegranate and type 2 diabetes. Nutr Res 33:341–348. https://doi.org/10.1016/j.nutres.2013.03.003

    CAS  PubMed  Article  Google Scholar 

  11. Bassaganya-Riera J, Diguardo M, Climent M, Vives C, Carbo A, Jouni ZE, Einerhand AWC, O’Shea M, Hontecillas R (2011) Activation of PPARγ and δ by dietary punicic acid ameliorates intestinal inflammation in mice. Br J Nutr 106:878–886. https://doi.org/10.1017/S0007114511001188

    CAS  PubMed  Article  Google Scholar 

  12. Bates PD (2016) Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 1861:1214–1225. https://doi.org/10.1016/j.bbalip.2016.03.021

    CAS  Article  Google Scholar 

  13. Bates PD, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16:358–364. https://doi.org/10.1016/j.pbi.2013.02.015

    CAS  PubMed  Article  Google Scholar 

  14. Bayon S, Chen G, Weselake RJ, Browse J (2015) A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Plant Physiol 167:1259–1270. https://doi.org/10.1104/pp.114.253641

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Bohlin ME, Ohman M, Hamberg M, Blomberg LG (2003) Separation of conjugated trienoic fatty acid isomers by capillary electrophoresis. J Chromatogr A 985:471–478. https://doi.org/10.1016/S0021-9673(02)01526-1

    CAS  PubMed  Article  Google Scholar 

  16. Boroushaki MT, Mollazadeh H, Rajabian A, Dolati K, Hoseini A, Paseban M, Farzadnia M (2014) Protective effect of pomegranate seed oil against mercuric chloride-induced nephrotoxicity in rat. Ren Fail 36:1581–1586. https://doi.org/10.3109/0886022X.2014.949770

    CAS  PubMed  Article  Google Scholar 

  17. Boussetta T, Raad H, Lettéron P, Gougerot-Pocidalo MA, Marie JC, Fathi D, El-Benna J, Lettéron P, Gougerot-Pocidalo MA, Marie JC, Driss F, El-Benna J (2009) Punicic acid a conjugated linolenic acid inhibits TNFα-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One 4:e6458. https://doi.org/10.1371/journal.pone.0006458

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Browse J, McConn M, James D, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of A-linolenate: biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    CAS  PubMed  Google Scholar 

  19. Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831. https://doi.org/10.1111/j.1467-7652.2008.00361.x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci U S A 96:12935–12940. https://doi.org/10.1073/pnas.96.22.12935

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Cahoon EB, Ripp KG, Hall SE, Kinney AJ (2001) Formation of conjugated Δ8,Δ10-double bonds by Δ12-oleic-acid desaturase-related enzymes. Biosynthetic origin of calendic acid. J Biol Chem 276:2637–2643. https://doi.org/10.1074/jbc.M009188200

    CAS  PubMed  Article  Google Scholar 

  22. Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67:1166–1176. https://doi.org/10.1016/j.phytochem.2006.04.013

    CAS  PubMed  Article  Google Scholar 

  23. Cao Y, Gao HL, Chen JN, Chen ZY, Yang L (2006) Identification and characterization of conjugated linolenic acid isomers by Ag+-HPLC and NMR. J Agric Food Chem 54:9004–9009. https://doi.org/10.1021/jf0616199

    CAS  PubMed  Article  Google Scholar 

  24. Cao Y, Yang L, Gao HL, Chen JN, Chen ZY, Ren QS (2007) Re-characterization of three conjugated linolenic acid isomers by GC-MS and NMR. Chem Phys Lipids 145:128–133. https://doi.org/10.1016/j.chemphyslip.2006.11.005

    CAS  PubMed  Article  Google Scholar 

  25. Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288–2294. https://doi.org/10.1074/jbc.R111.290072

    CAS  PubMed  Article  Google Scholar 

  26. Chen J, Cao Y, Gao H, Yang L, Chen ZY (2007) Isomerization of conjugated linolenic acids during methylation. Chem Phys Lipids 150:136–142. https://doi.org/10.1016/j.chemphyslip.2007.06.223

    CAS  PubMed  Article  Google Scholar 

  27. Chen G, Woodfield HK, Pan X, Harwood JL, Weselake RJ (2015) Acyl-trafficking during plant oil accumulation. Lipids 50:1057–1068. https://doi.org/10.1007/s11745-015-4069-x

    CAS  PubMed  Article  Google Scholar 

  28. Chisholm MJ, Hopkins CY (1964) Fatty acid composition of some Cucurbitaceae seed oils. Can J Chem 42:560–564. https://doi.org/10.1139/v64-082

    CAS  Article  Google Scholar 

  29. Cho S, Ryu C, Yang J, Mbiriri DT, Choi CW, Chae JI, Kim YH, Shim KS, Kim YJ, Choi NJ (2013) Effect of conjugated linoleic acid feeding on the growth performance and meat fatty acid profiles in broiler: meta-analysis. Asian Australas J Anim Sci 26:995–1002. https://doi.org/10.5713/ajas.2013.13071

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Costantini S, Rusolo F, De Vito V, Moccia S, Picariello G, Capone F, Guerriero E, Castello G, Volpe MG (2014) Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules 19:8644–8660. https://doi.org/10.3390/molecules19068644

    PubMed  Article  CAS  Google Scholar 

  31. Coursodon-Boyiddle CF, Snarrenberg CL, Adkins-Rieck CK, Bassaganya-Riera J, Hontecillas R, Lawrence P, Brenna JT, Jouni ZE, Dvorak B (2012) Pomegranate seed oil reduces intestinal damage in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 303:G744–G751. https://doi.org/10.1152/ajpgi.00248.2012

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Das AK, Mandal SC, Banerjee SK, Sinha S, Saha BP, Pal M (2001) Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother Res 15:628–629. https://doi.org/10.1002/ptr.740

    CAS  PubMed  Article  Google Scholar 

  33. Dyer JM, Chapital DC, Kuan JW, Mullen RT, Turner C, Mckeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038. https://doi.org/10.1104/pp.102.010835

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Eikani MH, Golmohammad F, Homami SS (2012) Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food Bioprod Process 90:32–36. https://doi.org/10.1016/j.fbp.2011.01.002

    CAS  Article  Google Scholar 

  35. Elbandy MA, Ashoush IS (2012) Phytochemicals in pomegranate seeds and their effect as hypolipidemic agent in hypercholesterolemic rats. World J Dairy Food Sci 7:85–92. https://doi.org/10.5829/idosi.wjdfs.2012.7.1.1107

    Google Scholar 

  36. Fujimoto T, Parton RG (2011) Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3(3):a004838. https://doi.org/10.1101/cshperspect.a004838

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Gao S, Tong Y, Wen Z, Zhu L, Ge M, Chen D, Jiang Y, Yang S (2016) Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 43:1085–1093. https://doi.org/10.1007/s10295-016-1789-8

    CAS  PubMed  Article  Google Scholar 

  38. Garaiova M, Mietkiewska E, Weselake RJ, Holic R (2017) Metabolic engineering of Schizosaccharomyces pombe to produce punicic acid, a conjugated fatty acid with nutraceutic properties. Appl Microbiol Biotechnol 101(21):7913–7922. https://doi.org/10.1007/s00253-017-8498-8

    CAS  PubMed  Article  Google Scholar 

  39. Gasmi J, Sanderson JT (2010) Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. J Agric Food Chem 58:12149–12156. https://doi.org/10.1021/jf103306k

    CAS  PubMed  Article  Google Scholar 

  40. Gaydou EM, Miralles J, Rasoazanakolona V (1987) Analysis of conjugated octadecatrienoic acids in Momordica balsamina seed oil by GLC and 13C NMR spectroscopy. J Am Oil Chem Soc 64:997–1000. https://doi.org/10.1007/BF02542436

    CAS  Article  Google Scholar 

  41. Grossmann ME, Mizuno NK, Schuster T, Cleary MP (2010) Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Int J Oncol 36:421–426. https://doi.org/10.3892/ijo_00000515

    CAS  PubMed  Google Scholar 

  42. Habibnia M, Ghavami M, Ansaripour M, Vosough S (2012) Chemical evaluation of oils extracted from five different varieties of Iranian pomegranate seeds. J Food Biosci Technol 2:35–40

    Google Scholar 

  43. Harwood JL (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids: biology, utilisation and manipulation. Blackwell Publishing, Oxford, pp 27–66

    Google Scholar 

  44. He Z, Chapital DC, Cheng HN, Klasson KT, Olanya MO, Uknalis J (2014) Application of tung oil to improve adhesion strength and water resistance of cottonseed meal and protein adhesives on maple veneer. Ind Crop Prod 61:398–402. https://doi.org/10.1016/j.indcrop.2014.07.031

    CAS  Article  Google Scholar 

  45. Hora JJ, Maydew ER, Lansky EP, Dwivedi C (2003) Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. J Med Food 6:157–161. https://doi.org/10.1089/10966200360716553

    CAS  PubMed  Article  Google Scholar 

  46. Horn PJ, Liu J, Cocuron JC, McGlew K, Thrower NA, Larson M, Lu C, Alonso AP, Ohlrogge J (2016) Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. Plant J 86:322–348. https://doi.org/10.1111/tpj.13163

    CAS  PubMed  Article  Google Scholar 

  47. Hornung E, Pernstich C, Feussner I (2002) Formation of conjugated delta11 delta13-double bonds by delta12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds. Eur J Biochem 269:4852–4859. https://doi.org/10.1046/j.1432-1033.2002.03184.x

    CAS  PubMed  Article  Google Scholar 

  48. Hsieh K, Lee YK, Londos C, Raaka BM, Dalen KT, Kimmel AR (2012) Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J Cell Sci 125:4067–4076. https://doi.org/10.1242/jcs.104943

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Iwabuchi M, Kohno-Murase J, Imamura J (2003) D12-oleate desaturase-related enzymes associated with formation of conjugated trans-D11, cis-D13 double bonds. J Biol Chem 278:4603–4610. https://doi.org/10.1074/jbc.M210748200

    CAS  PubMed  Article  Google Scholar 

  50. Jiang W, Nie S, Qu Z, Bi C, Shan A (2014) The effects of conjugated linoleic acid on growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles. Poult Sci 93:1202–1210. https://doi.org/10.3382/ps.2013-03683

    CAS  PubMed  Article  Google Scholar 

  51. Joh YGY-G, Kim SJS-J, Christie WW (1995) The structure of the triacylglycerols, containing punicic acid, in the seed oil of Trichosanthes kirilowii. J Am Oil Chem Soc 72:1037–1042. https://doi.org/10.1007/BF02660718

    CAS  Article  Google Scholar 

  52. Kaufman M, Wiesman Z (2007) Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol finger printing. J Agric Food Chem 55:10405–10413. https://doi.org/10.1021/jf072741q

    CAS  PubMed  Article  Google Scholar 

  53. Khoddami A, Bin Y, Man C, Roberts TH (2014) Physico-chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing. Eur J Lipid Sci Technol 116:553–562. https://doi.org/10.1002/ejlt.201300416

    CAS  Article  Google Scholar 

  54. Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52:983–993. https://doi.org/10.1093/pcp/pcr051

    CAS  PubMed  Article  Google Scholar 

  55. Koba K, Imamura J, Akashoshi A, Kohno-Murase J, Nishizono S, Iwabuchi M, Tanaka K, Sugano M (2007) Genetically modified rapeseed oil containing cis-9,trans-11,cis-13-octadecatrienoic acid affects body fat mass and lipid metabolism in mice. J Agric Food Chem 55:3741–3748. https://doi.org/10.1021/jf063264z

    CAS  PubMed  Article  Google Scholar 

  56. Kohno H, Suzuki R, Yasui Y, Hosokawa M, Miyashita K, Tanaka T (2004) Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci 95:481–486. https://doi.org/10.1111/j.1349-7006.2004.tb03236.x

    CAS  PubMed  Article  Google Scholar 

  57. Lager I, Yilmaz JL, Zhou X-R, Jasieniecka K, Kazachkov M, Wang P, Zou J, Weselake R, Smith MA, Bayon S, Dyer JM, Shockey JM, Heinz E, Green A, Banas A, Stymne S (2013) Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. J Biol Chem 288:36902–36914. https://doi.org/10.1074/jbc.M113.521815

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Lager I, Glab B, Eriksson L, Chen G, Banas A, Stymne S (2015) Novel reactions in acyl editing of phosphatidylcholine by lysophosphatidylcholine transacylase (LPCT) and acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activities in microsomal preparations of plant tissues. Planta 241:347–358. https://doi.org/10.1007/s00425-014-2184-1

    CAS  PubMed  Article  Google Scholar 

  59. Lakshminarayana G, Rao KS, Klttur MH, Mahajanshetty CS (1988) Occurrence of punicic acid in Trichosanthes bracteata and Trichosanthes nervifolia seed oils. J Am Oil Chem Soc 65:347–348. https://doi.org/10.1007/BF02663074

    CAS  Article  Google Scholar 

  60. Lands W (1960) Metabolism of glycerolipids: II. The enzymatic acylation of lysolecithin. J Biol Chem 235:2233–2237

    CAS  PubMed  Google Scholar 

  61. Lansky EP, Harrison G, Froom P, Jiang WG (2005a) Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Investig New Drugs 23:121–122. https://doi.org/10.1007/s10637-005-5856-7

    CAS  Article  Google Scholar 

  62. Lansky EP, Jiang W, Mo H, Bravo L, Froom P, Yu W, Harris NM, Neeman I, Campbell MJ (2005b) Possible synergistic prostate cancer suppression by anatomically discrete pomegranate fractions. Investig New Drugs 23:11–20. https://doi.org/10.1023/B:DRUG.0000047101.02178.07

    CAS  Article  Google Scholar 

  63. Lawrence P, Brenna JT (2006) Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters. Anal Chem 78:1312–1317. https://doi.org/10.1021/ac0516584

    CAS  PubMed  Article  Google Scholar 

  64. Ledesma-Amaro R (2015) Microbial oils: a customizable feedstock through metabolic engineering. Eur J Lipid Sci Technol 117:141–144. https://doi.org/10.1002/ejlt.201400181

    CAS  Article  Google Scholar 

  65. Ledesma-Amaro R, Nicaud JM (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50. https://doi.org/10.1016/j.plipres.2015.12.001

    CAS  PubMed  Article  Google Scholar 

  66. Liu G, Xu X, Hao Q, Gao Y (2009) Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT Food Sci Technol 42:1491–1495. https://doi.org/10.1016/j.lwt.2009.04.011

    CAS  Article  Google Scholar 

  67. Liu X, Ding W, Jiang H (2017) Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microb Cell Factories 16:125. https://doi.org/10.1186/s12934-017-0732-7

    Article  Google Scholar 

  68. Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci U S A 106:18837–18842. https://doi.org/10.1073/pnas.0908848106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. McFarlin BK, Strohacker KA, Kueht ML (2009) Pomegranate seed oil consumption during a period of high-fat feeding reduces weight gain and reduces type 2 diabetes risk in CD-1 mice. Br J Nutr 102:54–59. https://doi.org/10.1017/S0007114508159001

    CAS  PubMed  Article  Google Scholar 

  70. Michaud AL, Yurawecz MP, Delmonte P, Corl BA, Bauman DE, Brenna JT (2003) Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal Chem 75:4925–4930. https://doi.org/10.1021/ac034221+

    CAS  PubMed  Article  Google Scholar 

  71. Mietkiewska E, Lin Y, Weselake RJ (2014a) Engineering production of C18 conjugated fatty acids in developing seeds of oil crops. Biocatal Agric Biotechnol 3:44–48. https://doi.org/10.1016/j.bcab.2013.11.003

    Google Scholar 

  72. Mietkiewska E, Miles R, Wickramarathna A, Sahibollah AF, Greer MS, Chen G, Weselake RJ (2014b) Combined transgenic expression of Punica granatum conjugase (FADX) and FAD2 desaturase in high linoleic acid Arabidopsis thaliana mutant leads to increased accumulation of punicic acid. Planta 240:575–583. https://doi.org/10.1007/s00425-014-2109-z

    CAS  PubMed  Article  Google Scholar 

  73. Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319. https://doi.org/10.1146/annurev.arplant.58.032806.103811

    CAS  PubMed  Article  Google Scholar 

  74. Napier JA, Haslam RP, Beaudoin F, Cahoon EB (2014) Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr Opin Plant Biol 19:68–75. https://doi.org/10.1016/j.pbi.2014.04.001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Nekooeian AA, Eftekhari MH, Adibi S, Rajaeifard A (2014) Effects of pomegranate seed oil on insulin release in rats with type 2 diabetes. Iran J Med Sci 39:130–135

    PubMed  PubMed Central  Google Scholar 

  76. Newman R, Lansky E, Block M, Newman R, Lansky E, Block M (2007) Pomegranate: the most medicinal fruit. Basic Heal Publ Inc, Laguna Beach

    Google Scholar 

  77. Ohlrogge JB, Jaworski JG (2003) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–138. https://doi.org/10.1146/annurev.arplant.48.1.109

    Article  Google Scholar 

  78. Ohsaki Y, Suzuki M, Fujimoto T (2014) Open questions in lipid droplet biology. Chem Biol 21:86–96. https://doi.org/10.1016/j.chembiol.2013.08.009

    CAS  PubMed  Article  Google Scholar 

  79. Özgül-Yücel S (2005) Determination of conjugated linolenic acid content of selected oil seeds grown in Turkey. J Am Oil Chem Soc 82:893–897. https://doi.org/10.1007/s11746-005-1161-7

    Article  Google Scholar 

  80. Pan X, Siloto RMP, Wickramarathna AD, Mietkiewska E, Weselake RJ (2013) Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. J Biol Chem 288:24173–24188. https://doi.org/10.1074/jbc.M113.475699

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Pan X, Chen G, Kazachkov M, Greer MS, Caldo KM, Zou J, Weselake RJ (2015) In vivo and in vitro evidence for biochemical coupling of reactions catalyzed by lysophosphatidylcholine acyltransferase and diacyglycerol acyltransferase. J Biol Chem 290:18068–18078. https://doi.org/10.1074/jbc.M115.654798

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Pomraning KR, Wei S, Karagiosis SA, Kim YM, Dohnalkova AC, Arey BW, Bredeweg EL, Orr G, Metz TO, Baker SE (2015) Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLoS One 10:e0123188. https://doi.org/10.1371/journal.pone.0123188

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Qiu X, Reed DW, Hong H, MacKenzie SL, Covello PS (2001) Identification and analysis of a gene from Calendula officinalis encoding a fatty acid conjugase. Plant Physiol 125:847–855. https://doi.org/10.1104/pp.125.2.847

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Saha SS, Ghosh M (2009) Comparative study of antioxidant activity of alpha-eleostearic acid and PA against oxidative stress generated by sodium arsenite. Food Chem Toxicol 47:2551–2556. https://doi.org/10.1016/j.fct.2009.07.012

    CAS  PubMed  Article  Google Scholar 

  85. Saha SS, Ghosh M (2012) Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. Br J Nutr 108:974–983. https://doi.org/10.1017/S0007114511006325

    CAS  PubMed  Article  Google Scholar 

  86. Sargolzaei J, Moghaddam AH (2013) Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system. Front Chem Sci Eng 7:357–365. https://doi.org/10.1007/s11705-013-1336-3

    CAS  Article  Google Scholar 

  87. Sassano G, Sanderson P, Franx J, Groot P, Van Straalen J, Bassaganya-Riera J (2009) Analysis of pomegranate seed oil for the presence of jacaric acid. J Sci Food Agric 89:1046–1052. https://doi.org/10.1002/jsfa.3552

    CAS  Article  Google Scholar 

  88. Shabbir MA, Khan MR, Saeed M, Pasha I, Khalil AA, Siraj N (2017) Punicic acid: a striking health substance to combat metabolic syndromes in humans. Lipids Health Dis 16:99. https://doi.org/10.1186/s12944-017-0489-3

    PubMed  PubMed Central  Article  Google Scholar 

  89. Sita Devi P (2003) TLC as a tool for quantitative isolation of conjugated trienoic FA. J Am Oil Chem Soc 80:315–318. https://doi.org/10.1007/s11746-003-0696-y

    Article  Google Scholar 

  90. Slack CR, Campbell LC, Browse JA, Roughan PG (1983) Some evidence for the reversibility of the cholinephosphotransferase catalysed reaction in developing linseed cotyledons in vivo. Biochim Biophys Acta 754:10–20. https://doi.org/10.1016/0005-2760(83)90076-0

    CAS  Article  Google Scholar 

  91. Slack CR, Roughan PG, Browse JA, Gardiner SE (1985) Some properties of cholinephosphotransferase from developing safflower cotyledons. Biochim Biophys Acta 833:438–448. https://doi.org/10.1016/0005-2760(85)90101-8

    CAS  Article  Google Scholar 

  92. Smith CR (1971) Occurrence of unusual fatty acids in plants. Prog Chem Fats Other Lipids 11:137139–131177. https://doi.org/10.1016/0079-6832(71)90005-X

    Article  Google Scholar 

  93. Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516. https://doi.org/10.1007/s00425-003-1015-6

    CAS  PubMed  Article  Google Scholar 

  94. Snyder CL, Yurchenko OP, Siloto RMP, Chen X, Liu Q, Mietkiewska E, Weselake RJ (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16. https://doi.org/10.1016/j.nbt.2009.05.005

    CAS  Article  Google Scholar 

  95. Song Z, Mietkiewska E, Weselake RJ (2017) The linin promoter is highly effective in enhancing punicic acid production in Arabidopsis. Plant Cell Rep 36:447–457. https://doi.org/10.1007/s00299-016-2094-8

    CAS  PubMed  Article  Google Scholar 

  96. Stymne S, Stobart AK (1984) Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J 223:305–314. https://doi.org/10.1042/bj2230305

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Suksombat W, Boonmee T, Lounglawan P (2007) Effects of various levels of conjugated linoleic acid supplementation on fatty acid content and carcass composition of broilers. Poult Sci 86:318–324

    CAS  PubMed  Article  Google Scholar 

  98. Suzuki R, Noguchi R, Ota T, Abe M, Miyashita K, Kawada T (2001) Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids 36:477–482. https://doi.org/10.1093/ps/86.2.318

    CAS  PubMed  Article  Google Scholar 

  99. Takagi T, Itabashi Y (1981) Occurrence of mixtures of geometrical isomers of conjugated octadecatrienoic acids in some seed oils: analysis by open-tubular gas liquid chromatography and high performance liquid chromatography. Lipids 16:546–551. https://doi.org/10.1007/BF02535054

    CAS  Article  Google Scholar 

  100. Tulloch AP, Bergter L (1979) Analysis of the conjugated trienoic acid containing oil from Fevillea trilobata by 13C nuclear magnetic resonance spectroscopy. Lipids 14:996–1002. https://doi.org/10.1007/BF02533436

    CAS  Article  Google Scholar 

  101. van Erp H, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 155:683–693. https://doi.org/10.1104/pp.110.167239

    PubMed  Article  CAS  Google Scholar 

  102. van Erp H, Shockey J, Zhang M, Adhikari ND, Browse J (2015) Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis. Plant Physiol 168:36–46. https://doi.org/10.1104/pp.114.254110

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG (2013) Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J 11:197–210. https://doi.org/10.1111/pbi.12023

    CAS  PubMed  Article  Google Scholar 

  104. Vrinten P, Zhiyuan H, Munchinsky M-A, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 139:79–87. https://doi.org/10.1104/pp.105.064451

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Vroegrijk IO, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassaganya-Riera J, Zondag GC, Romijn JA, Havekes LM, Voshol PJ (2011) Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol 49:1426–1430. https://doi.org/10.1016/j.fct.2011.03.037

    CAS  PubMed  Article  Google Scholar 

  106. Wang W, Wang H, Wang J, Ye S, Xiao S (2013) Induction of apoptosis by punicic acid in bladder carcinoma T24 cells. J Dalian Polytech Univ 32:82–85

    Google Scholar 

  107. Wang L, Li W, Lin M, Garcia M, Mulholland D, Lilly M, Martins-Green M (2014) Luteolin, ellagic acid and punicic acid are natural products that inhibit prostate cancer metastasis. Carcinogenesis 35:2321–2330. https://doi.org/10.1093/carcin/bgu145

    CAS  PubMed  Article  Google Scholar 

  108. Weselake R, Mietkiewska E (2014) Gene combinations for producing punicic acid in transgenic plants. U.S. Patent Application No. 14/224,582

  109. Wickramarathna AD, Siloto RMP, Mietkiewska E, Singer SD, Pan X, Weselake RJ (2015) Heterologous expression of flax PHOSPHOLIPID:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds. Bmc Biotechnol 15:1–15. https://doi.org/10.1186/s12896-015-0156-6

    CAS  Article  Google Scholar 

  110. Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE (2005) S3-12, Adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 280:19146–19155. https://doi.org/10.1074/jbc.M500978200

    CAS  PubMed  Article  Google Scholar 

  111. Yazawa H, Holic R, Kumagai H, Uemura H (2013) Toxicity of ricinoleic acid production in fission yeast Schizosaccharomyces pombe is suppressed by the overexpression of plg7, a phospholipase A2 of a platelet-activating factor (PAF) family homolog. Appl Microbiol Biotechnol 97:8193–8203. https://doi.org/10.1007/s00253-013-4987-6

    CAS  PubMed  Article  Google Scholar 

  112. Yuan G, Sun H, Sinclair AJ, Li D (2009) Effects of conjugated linolenic acid and conjugated linoleic acid on lipid metabolism in mice. Eur J Lipid Sci Technol 111:537–545. https://doi.org/10.1002/ejlt.200800200

    CAS  Article  Google Scholar 

  113. Yuan G-FF, Chen X-EE, Li D (2014) Conjugated linolenic acids and their bioactivities: a review. Food Funct 5:1360–1368. https://doi.org/10.1039/c4fo00037d

    CAS  PubMed  Article  Google Scholar 

  114. Yuan G, Chen X, Li D (2015) Modulation of peroxisome proliferator-activated receptor gamma (PPAR γ) by conjugated fatty acid in obesity and inflammatory bowel disease. J Agric Food Chem 63:1883–1895. https://doi.org/10.1021/jf505050c

    CAS  PubMed  Article  Google Scholar 

  115. Zhang C, Hua Q (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413. https://doi.org/10.3389/fphys.2015.00413

    PubMed  Google Scholar 

  116. Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen YQ, Zhang H, Chen W (2013) Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Factories 12:70. https://doi.org/10.1186/1475-2859-12-70

    Article  CAS  Google Scholar 

  117. Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhao ZK (2015) Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14:252–264. https://doi.org/10.1128/EC.00141-14

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Preparation of this review was supported by the Slovak Research and Development Agency under the contract Nos. APVV-0785-11 and APVV-15-0654 (R. H.) and the Natural Sciences and Engineering Research Council of Canada Discovery Grants to C.J. F. (RGPIN-2017-04746), R.J.W. (RGPIN-2014-04585) and G.C. (RGPIN-2016-05926).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Roman Holic or Guanqun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holic, R., Xu, Y., Caldo, K.M.P. et al. Bioactivity and biotechnological production of punicic acid. Appl Microbiol Biotechnol 102, 3537–3549 (2018). https://doi.org/10.1007/s00253-018-8883-y

Download citation

Keywords

  • Conjugated linolenic acid
  • Metabolic engineering
  • Yeast biotechnology
  • Functional food
  • Triacylglycerol biosynthesis
  • Anti-cancer