Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 4203–4216 | Cite as

Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters

  • Valeria Prigione
  • Bruno Trocini
  • Federica Spina
  • Anna Poli
  • Davide Romanisio
  • Samuele Giovando
  • Giovanna Cristina Varese
Environmental biotechnology


Tannins are a complex family of polyphenolic compounds, widely distributed in the plant kingdom where they act as growth inhibitors towards many microorganisms including bacteria, yeasts, and fungi. Tannins are one of the major components of tannery wastewaters and may cause serious environmental pollution. In the present study, four different tannins (the hydrolysable chestnut ellagitannin and tara gallotannin and the condensed quebracho and wattle tannins) were characterized from a mycological point of view with the aim of selecting fungal strains capable of growing in the presence of high tannin concentration and thus potentially useful in industrial biotransformations of these compounds or in the bioremediation of tannery wastewaters. A total of 125 isolates of filamentous fungi belonging to 10 species and four genera (Aspergillus, Paecilomyces, Penicillium, and Talaromyces) were isolated from the tannin industrial preparations. Miniaturized biotransformation tests were set up with 10 fungal strains and the high-performance liquid chromatography (HPLC) analysis pointed out a strong activity of all the tested fungi on both chestnut and tara tannins. Two strains (Aspergillus tubingensis MUT 990 and Paecilomyces variotii MUT 1125), tested against a real tannery wastewater, were particularly efficient in chemical oxygen demand (COD) and tannin removal (> 60%), with a detoxification above 74%. These results indicate that these fungi are potentially exploitable in the treatment of tannery wastewaters.


Tannin Fungi Tannery wastewater Biotransformation Bioremediation 



This work was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) with the FIRB project RBFR13V3CH_002 with the title “In situ bioaugmentation to exploit the combination of fungi and bacteria for recalcitrant compounds removal.”

Compliance with ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.


  1. Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramirez-Coronel A, Contreras-Esquivel JC (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59. CrossRefPubMedGoogle Scholar
  2. Aguilera-Carbo A, Augur C, Prado-Barragan LA, Favela-Torres E, Aguilar CN (2008) Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 78:189–199. CrossRefPubMedGoogle Scholar
  3. Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC (2010) Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol 101:3067–3075. CrossRefPubMedGoogle Scholar
  4. Ascacio-Valdes JA, Buenrostro JJ, De la Cruz R, Sepulveda L, Aguilera AF, Prado A, Contreras JC, Rodriguez R, Aguilar CN (2016) Fungal biodegradation of pomegranate ellagitannins. J Basic Microbiol 54:28–34. CrossRefGoogle Scholar
  5. Bardei F, Bouziane H, Trigo MD, Ajouray N, El Haskouri F, Kadiri M (2017) Atmospheric concentrations and intradiurnal pattern of Alternaria and Cladosporium conidia in Tétouan (NW of Morocco). Aerobiologia 33:221–228. CrossRefGoogle Scholar
  6. Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins—a current perspective. Biodegradation 9:343–357. CrossRefPubMedGoogle Scholar
  7. Bhoite RN, Murthy PS (2015) Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food Bioprod Process 94:727–735. CrossRefGoogle Scholar
  8. Cassano A, Adzet J, Molinari R, Buonomenna MG, Roig J (2003) Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry. Water Res 37:2426–2434. CrossRefPubMedGoogle Scholar
  9. Chambergo FS, Valencia EY (2016) Fungal biodiversity to biotechnology. Appl Microbiol Biotechnol 100:2567–2577. CrossRefPubMedGoogle Scholar
  10. Chowdhury SA, Vijayaraghavan R, MacFarlane DR (2010) Distillable ionic liquid extraction of tannins from plant materials. Green Chem 12:1023–1028. CrossRefGoogle Scholar
  11. Clarke KR, Warwick RM (2014) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd, PlymouthGoogle Scholar
  12. Cruz-Hernandez M, Augur C, Rodriguez R, Contreras-Esquivel JC, Aguilar CN (2006) Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technol Biotechnol 44:541–544Google Scholar
  13. de Souza JM, Montalvao MF, da Silva AR, Rodrigues ASD, Malafaia G (2017) A pioneering study on cytotoxicity in Australian parakeets (Melopsittacus undulates) exposed to tannery effluent. Chemosphere 175:521–533. CrossRefPubMedGoogle Scholar
  14. Demirel R, Sen B, Kadaifciler D, Yoltas A, Okten S, Okzale E, Berikten D, Samson RA, Uztan AH, Yilmaz N (2017) Indoor airborne fungal pollution in newborn units in Turkey. Environ Monit Assess 189:362. CrossRefPubMedGoogle Scholar
  15. Deschamps A, Otuk G, Lebeault J (1983) Production of tannase and degradation chestnut tannin by bacteria. J Ferment Technol 61:55–59Google Scholar
  16. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, LondonGoogle Scholar
  17. Edelmann A, Lendi B (2002) Toward the optical tongue: flow-through sensing of tannin-protein interactions based on FTIR spectroscopy. J Am Chem Soc 124:14741–14747. CrossRefPubMedGoogle Scholar
  18. European Commission (2010) Directive 2010/75/EU of the European Parliament and of the Council on Industrial Emissions (integrated pollution prevention and control). Off J Eur Union L334/17Google Scholar
  19. Giovando S, Pizzi A, Pasch H, Pretorius N (2013) Structure and oligomers distribution of commercial tara (Caesalpinia spinosa) hydrolysable tannin. ProLigno 9:22–31Google Scholar
  20. Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G, Varese GC (2017) The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga. PLoS One 12:e0175941. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Govindarajan RK, Revathi S, Rameshkumar N, Krishnan M, Kayalvizhi N (2016) Microbial tannase: current perspectives and biotechnological advances. Biocatal Agric Biotechnol 6:168–175. Google Scholar
  22. Hasegawa MC, Barbosa AM, Takashima K (2011) Biotreatment of industrial tannery wastewater using Botryosphaeria rhodina. J Serb Chem Soc 76:439–446. CrossRefGoogle Scholar
  23. International Organization for Standardization (2004) ISO 8692:2004 water quality—freshwater algal growth inhibition test with unicellular green algae. International Organization for Standardization, GenevaGoogle Scholar
  24. International Organization for Standardization (2012) ISO 14088:2012 leather—chemical tests—quantitative analysis of tanning agents by filter method. International Organization for Standardization, GenevaGoogle Scholar
  25. Kanth SV, Venba R, Madhan B, Chandrababu NK, Sadulla S (2009) Cleaner tanning practices for tannery pollution abatement: role of enzymes in eco-friendly vegetable tanning. J Clean Prod 17:507–515. CrossRefGoogle Scholar
  26. Kiffer E, Morelet M (1997) Les Deuteromycetes: classification et cles d'Identification Generique. INRA Editions, ParisGoogle Scholar
  27. Knudson L (1913) Tannic acid fermentation. J Biol Chem 14:159–184Google Scholar
  28. Lara-Victoriano F, Veana F, Hernandez-Castillo FD, Aguilar CN, Reyes-Valdes MH, Rodriduez-Herrera R (2017) Variability among strains of Aspergillus section Nigri with capacity to degrade tannic acid isolated from extreme environments. Arch Microbiol 199:77–84. CrossRefPubMedGoogle Scholar
  29. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260. CrossRefPubMedGoogle Scholar
  30. Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241CrossRefGoogle Scholar
  31. Ma W, Zhao F, Ye Q, Hu Z, Yan D, Hou J, Yang Y (2015) Production and partial purification of tannase from Aspergillus ficuum Gim 3.6. Prep Biochem Biotechnol 45:754–768. CrossRefPubMedGoogle Scholar
  32. Messini A, Buccioni A, Minieri S, Mannelli F, Mugnai L, Comparini C, Venturi M, Viti C, Pezzati A, Rapaccini S (2017) Effect of chestnut tannin extract (Castanea sativa Miller) on the proliferation of Cladosporium cladosporioides on sheep cheese rind during the ripening. Int Dairy J 66:6–12.
  33. Munz G, De Angelis D, Gori R, Mori G, Casarci M, Lubello C (2009) The role of tannins in conventional and membrane treatment of tannery wastewater. J Hazard Mater 164:733–739. CrossRefPubMedGoogle Scholar
  34. Okoduwa SIR, Igiri B, Udeh CB, Edenta C, Gauje B (2017) Tannery effluent treatment by yeast species isolates from watermelon. Toxics 5:1–10. CrossRefGoogle Scholar
  35. Pasch H, Pizzi A (2002) Considerations on the macromolecular structure of chestnut ellagitannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J Appl Polym Sci 85:429–437. CrossRefGoogle Scholar
  36. Pasch H, Pizzi A, Rode K (2001) MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer 42:7531–7539. CrossRefGoogle Scholar
  37. Pizzi A, Pasch H, Rode K, Giovando S (2009) Polymer structure of commercial hydrolyzable tannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J Appl Polym Sci 113:3847–3859. CrossRefGoogle Scholar
  38. Poli A, Lazzari A, Prigione V, Voyron S, Spadaro D, Varese GC (2016) Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils. Fungal Biol 120:862–872. CrossRefPubMedGoogle Scholar
  39. Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresour Technol 100:2770–2776. CrossRefPubMedGoogle Scholar
  40. Radebe N, Rode K, Pizzi A, Giovando S, Pasch H (2013a) MALDI-TOF-CID for the microstructure elucidation of polymeric hydrolysable tannins. J Appl PolymSci 128:97–107. CrossRefGoogle Scholar
  41. Radebe N, Rode K, Pizzi A, Pasch H (2013b) Microstructure elucidation of polyflavonoid tannins by MALDI-TOF-CID. J Appl Polym Sci 127:1937–1950. CrossRefGoogle Scholar
  42. Romero-Dondiz EM, Almazan JE, Rajal VB, Castro-Vidaurre EF (2015) Removal of vegetable tannins to recover water in the leather industry by ultrafiltration polymeric membranes. Chem Eng Res Des 93:727–735. CrossRefGoogle Scholar
  43. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, UtrechtGoogle Scholar
  44. Sathvika T, Manasi M, Rajesh V, Rajesh N (2015) Prospective application of Aspergillus species immobilized in sodium montmorillonite to remove toxic hexavalent chromium from wastewater. RSC Adv 5:107031–107044. CrossRefGoogle Scholar
  45. Silva de Lima J, Cruz R, Cordoville Fonseca J, Valente de Medeiros E, de Holanda Cavalcanti Maciel M, Aparecida Moreira K, de Souza Motta C (2014) Production, characterization of tannase from Penicillium montanense URM 6286 under SSF using agroindustrial wastes, and application in the clarification of grape juice (Vitis vinifera L.) Sci World J 2014:1–9. Google Scholar
  46. Silva O, Duarte A, Pimentel M, Viegas S, Barroso H, Machado J, Pires I, Cabrita J, Gomes E (1997) Antimicrobial activity of Terminalia macroptera root. J Ethnopharmacol 57:203–207. CrossRefPubMedGoogle Scholar
  47. Tigini V, Prigione V, Varese GC (2014) Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments. Sci Total Environ 487:335–341. CrossRefPubMedGoogle Scholar
  48. van Diepeningen AD, Debets AJM, Varga J, van der Gaag M, Swart K, Hoekstra RF (2004) Efficient degradation of tannic acid by black Aspergillus species. Mycol Res 108:919–925. CrossRefPubMedGoogle Scholar
  49. Venter PB, Sisa M, Van der Merwe MJ, Bonnet SL, Van der Westhuizen JH (2012) Analysis of commercial proanthocyanidins. Part 1: the chemical composition of quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry 73:95–105. CrossRefPubMedGoogle Scholar
  50. von Arx JA (1981) The genera of fungi sporulating in pure culture. J Cramer, VaduzGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Valeria Prigione
    • 1
  • Bruno Trocini
    • 2
  • Federica Spina
    • 1
  • Anna Poli
    • 1
  • Davide Romanisio
    • 2
  • Samuele Giovando
    • 2
  • Giovanna Cristina Varese
    • 1
  1. 1.Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
  2. 2.Centro Ricerche per la Chimica Fine Srl for Silvateam SpaSan Michele MondovìItaly

Personalised recommendations